Normalized defining polynomial
\( x^{21} + 33 x^{19} - 22 x^{18} + 396 x^{17} - 528 x^{16} + 2174 x^{15} - 3996 x^{14} + 5580 x^{13} - 8368 x^{12} + 1944 x^{11} + 15984 x^{10} - 38466 x^{9} + 69768 x^{8} - 97614 x^{7} + 98940 x^{6} - 79704 x^{5} + 55728 x^{4} - 31392 x^{3} + 12096 x^{2} - 2688 x + 256 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6293860585415717863922961747811348298858496=-\,2^{45}\cdot 3^{21}\cdot 61\cdot 809^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $109.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 61, 809$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{12}$, $\frac{1}{8} a^{15} - \frac{3}{8} a^{13} + \frac{1}{4} a^{12} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{64} a^{16} - \frac{1}{32} a^{15} - \frac{3}{64} a^{14} - \frac{1}{4} a^{13} - \frac{3}{16} a^{12} - \frac{1}{8} a^{11} + \frac{15}{32} a^{10} + \frac{1}{8} a^{9} + \frac{3}{16} a^{8} + \frac{3}{8} a^{7} - \frac{3}{8} a^{6} - \frac{1}{2} a^{5} - \frac{1}{32} a^{4} + \frac{3}{16} a^{3} - \frac{11}{32} a^{2} - \frac{3}{8} a - \frac{3}{8}$, $\frac{1}{512} a^{17} - \frac{7}{512} a^{15} + \frac{21}{256} a^{14} - \frac{11}{128} a^{13} - \frac{3}{16} a^{12} - \frac{57}{256} a^{11} + \frac{17}{128} a^{10} - \frac{41}{128} a^{9} + \frac{3}{32} a^{8} + \frac{27}{64} a^{7} + \frac{11}{32} a^{6} - \frac{97}{256} a^{5} + \frac{1}{64} a^{4} - \frac{63}{256} a^{3} - \frac{17}{128} a^{2} - \frac{1}{64} a + \frac{5}{32}$, $\frac{1}{4096} a^{18} + \frac{1}{2048} a^{17} - \frac{7}{4096} a^{16} - \frac{57}{1024} a^{15} + \frac{5}{512} a^{14} - \frac{247}{512} a^{13} - \frac{153}{2048} a^{12} + \frac{11}{128} a^{11} - \frac{7}{1024} a^{10} - \frac{35}{512} a^{9} - \frac{153}{512} a^{8} + \frac{3}{128} a^{7} - \frac{177}{2048} a^{6} - \frac{95}{1024} a^{5} + \frac{713}{2048} a^{4} - \frac{5}{64} a^{3} - \frac{73}{256} a^{2} + \frac{17}{64} a - \frac{59}{128}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} - \frac{19}{32768} a^{17} - \frac{93}{16384} a^{16} + \frac{11}{256} a^{15} - \frac{789}{4096} a^{14} + \frac{7823}{16384} a^{13} - \frac{477}{8192} a^{12} - \frac{1559}{8192} a^{11} + \frac{505}{2048} a^{10} - \frac{1991}{4096} a^{9} + \frac{209}{2048} a^{8} - \frac{2513}{16384} a^{7} - \frac{147}{2048} a^{6} + \frac{3901}{16384} a^{5} + \frac{3925}{8192} a^{4} + \frac{815}{2048} a^{3} + \frac{253}{1024} a^{2} - \frac{7}{1024} a - \frac{79}{512}$, $\frac{1}{262144} a^{20} - \frac{1}{131072} a^{19} - \frac{27}{262144} a^{18} - \frac{7}{8192} a^{17} + \frac{259}{65536} a^{16} + \frac{1611}{32768} a^{15} + \frac{1511}{131072} a^{14} + \frac{13913}{32768} a^{13} + \frac{13871}{65536} a^{12} - \frac{12837}{32768} a^{11} - \frac{12259}{32768} a^{10} - \frac{891}{8192} a^{9} - \frac{64705}{131072} a^{8} - \frac{11293}{65536} a^{7} + \frac{1549}{131072} a^{6} - \frac{12471}{32768} a^{5} + \frac{9651}{32768} a^{4} + \frac{11}{2048} a^{3} + \frac{2547}{8192} a^{2} - \frac{555}{2048} a + \frac{945}{2048}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 273459852214000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 47029248 |
| The 228 conjugacy class representatives for t21n147 are not computed |
| Character table for t21n147 is not computed |
Intermediate fields
| 7.7.670188544.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.6.10.2 | $x^{6} + 2 x^{5} + 2 x^{4} + 2 x^{2} + 2$ | $6$ | $1$ | $10$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.12.32.502 | $x^{12} + 4 x^{11} - 6 x^{10} + 4 x^{9} - 4 x^{8} + 4 x^{6} + 8 x^{5} - 6 x^{4} + 8 x^{3} - 4 x^{2} + 8 x - 2$ | $12$ | $1$ | $32$ | 12T140 | $[2, 8/3, 8/3, 3, 11/3, 11/3]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| 61 | Data not computed | ||||||
| 809 | Data not computed | ||||||