Normalized defining polynomial
\( x^{21} - 3 x^{20} - 68 x^{19} + 120 x^{18} + 2168 x^{17} - 1012 x^{16} - 39719 x^{15} - 28995 x^{14} + 416063 x^{13} + 787937 x^{12} - 2030115 x^{11} - 7492247 x^{10} - 1407263 x^{9} + 25538455 x^{8} + 48627612 x^{7} + 35727432 x^{6} - 39940417 x^{5} - 222181433 x^{4} - 460960453 x^{3} - 615417925 x^{2} - 623609988 x - 374722982 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-6157833349011271592152423961007508818954041688064=-\,2^{26}\cdot 4457^{6}\cdot 3421339093^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $210.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 4457, 3421339093$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} + \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{19} - \frac{1}{4} a^{16} - \frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} + \frac{1}{4} a^{11} + \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{61168275820261908660919843582300901356115996068} a^{20} - \frac{1755334865579632299068265647062179097351901809}{15292068955065477165229960895575225339028999017} a^{19} + \frac{309962276065500379485826733777581952454495551}{15292068955065477165229960895575225339028999017} a^{18} + \frac{14808864837924583637291220255844494773206501557}{61168275820261908660919843582300901356115996068} a^{17} - \frac{9998824109834184350803848816002548450363334253}{61168275820261908660919843582300901356115996068} a^{16} - \frac{13561497419168452914507075265215026129887959683}{61168275820261908660919843582300901356115996068} a^{15} - \frac{6607981594788776064180832055584602145180319211}{61168275820261908660919843582300901356115996068} a^{14} - \frac{12083423054376859497180027123177183828054286001}{61168275820261908660919843582300901356115996068} a^{13} - \frac{3251647869936207545344388158322494020590866901}{61168275820261908660919843582300901356115996068} a^{12} + \frac{24918063767883771965563986594949248156800006141}{61168275820261908660919843582300901356115996068} a^{11} - \frac{5510507975803767346074442384048294148412751165}{61168275820261908660919843582300901356115996068} a^{10} + \frac{21073380584768187667201396234852118388350806811}{61168275820261908660919843582300901356115996068} a^{9} + \frac{24465806789945267319574961454522589039133449363}{61168275820261908660919843582300901356115996068} a^{8} - \frac{13749550447601665384129050996721935927396835689}{61168275820261908660919843582300901356115996068} a^{7} - \frac{1630537239040983352815921389203742536416843626}{15292068955065477165229960895575225339028999017} a^{6} + \frac{10298705606072476493385426449875126090211592233}{61168275820261908660919843582300901356115996068} a^{5} + \frac{21435637199375042599520388321360631496537223967}{61168275820261908660919843582300901356115996068} a^{4} + \frac{6150745555585666749020630508000400893326900598}{15292068955065477165229960895575225339028999017} a^{3} + \frac{5583776506649617463585954908298855194719222649}{30584137910130954330459921791150450678057998034} a^{2} - \frac{3270860231137611560423418819353184952603456094}{15292068955065477165229960895575225339028999017} a + \frac{3984808583746356045309835693310558101655273859}{15292068955065477165229960895575225339028999017}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 29681355158300000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5878656 |
| The 120 conjugacy class representatives for t21n136 are not computed |
| Character table for t21n136 is not computed |
Intermediate fields
| 7.7.1271350336.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/7.9.0.1}{9} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | $21$ | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 2.12.18.47 | $x^{12} - 4 x^{11} + 2 x^{10} + 8 x^{9} - 2 x^{8} + 8 x^{4} + 8 x^{3} + 8$ | $4$ | $3$ | $18$ | 12T88 | $[2, 2, 2, 2, 2]^{6}$ | |
| 4457 | Data not computed | ||||||
| 3421339093 | Data not computed | ||||||