Normalized defining polynomial
\( x^{21} - 49 x^{19} - 98 x^{18} + 826 x^{17} + 2968 x^{16} - 7448 x^{15} - 44616 x^{14} + 22197 x^{13} + 371224 x^{12} + 210063 x^{11} - 1736602 x^{10} - 2769312 x^{9} + 3364144 x^{8} + 7470434 x^{7} - 27811420 x^{6} - 80806096 x^{5} + 4000752 x^{4} + 229127416 x^{3} + 240065168 x^{2} - 1757728 x - 66831808 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-56932470192652987188870611797563492035198976=-\,2^{36}\cdot 3^{7}\cdot 7^{35}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $121.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{12} a^{10} + \frac{1}{12} a^{9} - \frac{1}{4} a^{8} + \frac{1}{12} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{6} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{24} a^{11} + \frac{1}{12} a^{9} + \frac{1}{6} a^{8} + \frac{1}{8} a^{7} + \frac{1}{6} a^{6} - \frac{1}{2} a^{5} + \frac{1}{3} a^{4} + \frac{1}{12} a^{3} - \frac{1}{3} a^{2} + \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{24} a^{12} + \frac{1}{12} a^{9} - \frac{1}{8} a^{8} + \frac{1}{12} a^{7} + \frac{1}{6} a^{6} - \frac{1}{3} a^{5} + \frac{5}{12} a^{4} - \frac{1}{6} a^{3} + \frac{1}{6} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{48} a^{13} - \frac{1}{48} a^{12} - \frac{1}{24} a^{10} + \frac{1}{16} a^{9} + \frac{5}{48} a^{8} - \frac{1}{24} a^{7} - \frac{1}{12} a^{6} + \frac{11}{24} a^{5} - \frac{5}{24} a^{4} - \frac{1}{6} a^{3} + \frac{1}{12} a^{2} + \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{48} a^{14} - \frac{1}{48} a^{12} + \frac{1}{48} a^{10} - \frac{1}{48} a^{8} - \frac{1}{4} a^{7} - \frac{5}{24} a^{6} - \frac{1}{4} a^{5} + \frac{11}{24} a^{4} - \frac{1}{2} a^{3} + \frac{5}{12} a^{2} + \frac{1}{3}$, $\frac{1}{96} a^{15} - \frac{1}{96} a^{13} - \frac{1}{48} a^{12} + \frac{1}{96} a^{11} - \frac{5}{96} a^{9} + \frac{3}{16} a^{8} + \frac{5}{48} a^{7} - \frac{5}{24} a^{6} - \frac{17}{48} a^{5} - \frac{5}{24} a^{4} - \frac{5}{24} a^{3} + \frac{5}{12} a^{2} + \frac{1}{3}$, $\frac{1}{192} a^{16} + \frac{1}{192} a^{14} - \frac{1}{96} a^{13} + \frac{1}{64} a^{12} - \frac{1}{64} a^{10} - \frac{11}{96} a^{9} - \frac{1}{48} a^{8} - \frac{3}{16} a^{7} - \frac{19}{96} a^{6} - \frac{7}{48} a^{5} + \frac{1}{3} a^{4} - \frac{1}{8} a^{3} - \frac{5}{24} a^{2} + \frac{1}{3} a - \frac{1}{6}$, $\frac{1}{192} a^{17} - \frac{1}{192} a^{15} - \frac{1}{96} a^{14} + \frac{1}{192} a^{13} + \frac{1}{64} a^{11} + \frac{1}{96} a^{10} + \frac{5}{96} a^{9} + \frac{1}{16} a^{8} - \frac{13}{96} a^{7} - \frac{1}{48} a^{6} - \frac{13}{48} a^{5} + \frac{3}{8} a^{4} + \frac{1}{4} a^{3} + \frac{1}{3} a^{2} - \frac{1}{6} a$, $\frac{1}{2304} a^{18} + \frac{1}{2304} a^{17} + \frac{1}{2304} a^{16} + \frac{11}{2304} a^{15} - \frac{1}{768} a^{14} + \frac{23}{2304} a^{13} - \frac{47}{2304} a^{12} + \frac{1}{768} a^{11} - \frac{47}{1152} a^{10} - \frac{61}{576} a^{9} - \frac{19}{1152} a^{8} - \frac{31}{384} a^{7} + \frac{47}{576} a^{6} + \frac{2}{9} a^{5} - \frac{5}{96} a^{4} - \frac{119}{288} a^{3} + \frac{41}{144} a^{2} + \frac{17}{72} a - \frac{13}{36}$, $\frac{1}{18432} a^{19} + \frac{1}{9216} a^{18} - \frac{17}{9216} a^{17} - \frac{1}{384} a^{16} - \frac{7}{4608} a^{15} - \frac{7}{1152} a^{14} + \frac{7}{1536} a^{13} + \frac{1}{1152} a^{12} + \frac{113}{18432} a^{11} + \frac{149}{9216} a^{10} + \frac{245}{3072} a^{9} - \frac{143}{1152} a^{8} - \frac{2027}{9216} a^{7} - \frac{35}{4608} a^{6} + \frac{979}{2304} a^{5} - \frac{199}{1152} a^{4} + \frac{1019}{2304} a^{3} - \frac{97}{384} a^{2} + \frac{31}{64} a - \frac{139}{288}$, $\frac{1}{1155547836289069401544077856123854250752015546639085453154033664} a^{20} - \frac{29512361296364993323379894035595530916668485793442422492637}{1155547836289069401544077856123854250752015546639085453154033664} a^{19} - \frac{743084348416514424122348451649465907228680978868300643497}{6018478314005569799708738833978407556000080972078570068510592} a^{18} + \frac{745320189324333373825356706827161191519351973153783194326551}{577773918144534700772038928061927125376007773319542726577016832} a^{17} + \frac{708898495232747506242743196965686092912490344383206376494445}{288886959072267350386019464030963562688003886659771363288508416} a^{16} + \frac{133106666682263162672373337845345026190282685700723183334053}{32098551008029705598446607114551506965333765184419040365389824} a^{15} - \frac{2900105550624684187728619965758474813507091347272652587814327}{288886959072267350386019464030963562688003886659771363288508416} a^{14} - \frac{2923154984841596262906924360644170501693478320004560438252823}{288886959072267350386019464030963562688003886659771363288508416} a^{13} - \frac{16187044003699748346437539221301529859896817056169428970549311}{1155547836289069401544077856123854250752015546639085453154033664} a^{12} + \frac{11261083235792406544319271526101079147744907414158683701056379}{1155547836289069401544077856123854250752015546639085453154033664} a^{11} - \frac{603691746927431919762341412924220979566812983833386862780319}{144443479536133675193009732015481781344001943329885681644254208} a^{10} + \frac{19107323004398401920498980393017949034251402823144201379487111}{577773918144534700772038928061927125376007773319542726577016832} a^{9} - \frac{40746289529431244506376744731819383772091765266217114764615555}{577773918144534700772038928061927125376007773319542726577016832} a^{8} - \frac{19324903320191168747026752715249577698999196428767158956409489}{577773918144534700772038928061927125376007773319542726577016832} a^{7} + \frac{22382562767575588644723489253573268088037414597986671327938195}{288886959072267350386019464030963562688003886659771363288508416} a^{6} + \frac{7257968672844071129883204880678506580279158253130262274358557}{16049275504014852799223303557275753482666882592209520182694912} a^{5} - \frac{30165195298257141656371507888266553241000540184562108162800563}{144443479536133675193009732015481781344001943329885681644254208} a^{4} + \frac{1423527627744504862295537009036808555823140043454413132418005}{144443479536133675193009732015481781344001943329885681644254208} a^{3} + \frac{1098481885994543338840615000474765872051160232717015820799329}{2674879250669142133203883926212625580444480432034920030449152} a^{2} + \frac{15197206857348540653523928339387729824322975198935773325318625}{36110869884033418798252433003870445336000485832471420411063552} a - \frac{9027604222603615552310555388282051694745490000440254180503323}{18055434942016709399126216501935222668000242916235710205531776}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23977211379700000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 588 |
| The 19 conjugacy class representatives for t21n23 |
| Character table for t21n23 |
Intermediate fields
| 3.1.1176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 sibling: | data not computed |
| Degree 21 sibling: | data not computed |
| Degree 28 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{7}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.7.0.1}{7} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.4.8.4 | $x^{4} + 6 x^{2} + 4 x + 6$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.4 | $x^{4} + 6 x^{2} + 4 x + 6$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 2.4.8.4 | $x^{4} + 6 x^{2} + 4 x + 6$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7 | Data not computed | ||||||