Normalized defining polynomial
\( x^{21} - 10 x^{20} - 71 x^{19} + 1071 x^{18} + 520 x^{17} - 46776 x^{16} + 103735 x^{15} + 989586 x^{14} - 4517658 x^{13} - 7586285 x^{12} + 82754841 x^{11} - 79517644 x^{10} - 682235084 x^{9} + 2028465624 x^{8} + 866153091 x^{7} - 13441984314 x^{6} + 21009463100 x^{5} + 13056475367 x^{4} - 88309703262 x^{3} + 131356776913 x^{2} - 91887618149 x + 26232068501 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-528430645588489921205792011738671012618729507=-\,3^{5}\cdot 421^{2}\cdot 2741^{6}\cdot 170091127^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $134.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 421, 2741, 170091127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{7} a^{18} - \frac{2}{7} a^{16} - \frac{2}{7} a^{15} - \frac{2}{7} a^{14} + \frac{3}{7} a^{12} - \frac{3}{7} a^{11} - \frac{3}{7} a^{10} - \frac{1}{7} a^{9} + \frac{3}{7} a^{8} + \frac{2}{7} a^{7} - \frac{1}{7} a^{5} - \frac{3}{7} a^{4} + \frac{3}{7} a^{3} - \frac{3}{7} a^{2} + \frac{2}{7} a + \frac{3}{7}$, $\frac{1}{7} a^{19} - \frac{2}{7} a^{17} - \frac{2}{7} a^{16} - \frac{2}{7} a^{15} + \frac{3}{7} a^{13} - \frac{3}{7} a^{12} - \frac{3}{7} a^{11} - \frac{1}{7} a^{10} + \frac{3}{7} a^{9} + \frac{2}{7} a^{8} - \frac{1}{7} a^{6} - \frac{3}{7} a^{5} + \frac{3}{7} a^{4} - \frac{3}{7} a^{3} + \frac{2}{7} a^{2} + \frac{3}{7} a$, $\frac{1}{11893905246719582309809303582827776251457089805299346447702737317248087631} a^{20} - \frac{254889525885529386398485819945243487328303904774965479500201174438682964}{3964635082239860769936434527609258750485696601766448815900912439082695877} a^{19} - \frac{526657384122896424085401761559855745058817426546015569062383709252786652}{11893905246719582309809303582827776251457089805299346447702737317248087631} a^{18} - \frac{566929389184727065572849282099137256369431593448467922314997830425254054}{1699129320959940329972757654689682321636727115042763778243248188178298233} a^{17} + \frac{4193168749163953791006753575421406371556924421162512141734542085852676760}{11893905246719582309809303582827776251457089805299346447702737317248087631} a^{16} + \frac{968568214238060329226696820698579776102374970592613975269372214415972085}{11893905246719582309809303582827776251457089805299346447702737317248087631} a^{15} - \frac{48013765351598683147602572494544370745352018086388515742916078815284880}{566376440319980109990919218229894107212242371680921259414416062726099411} a^{14} - \frac{1489885016003478950982024823608956177183992882711109459972642844202219202}{3964635082239860769936434527609258750485696601766448815900912439082695877} a^{13} + \frac{1970089928181168499084681582594580772127688311290404629125849111261184291}{3964635082239860769936434527609258750485696601766448815900912439082695877} a^{12} - \frac{277552361491457180779665334386997531976192353845276293465099483227972658}{11893905246719582309809303582827776251457089805299346447702737317248087631} a^{11} - \frac{3006666158221537286335077647639646621832109492446930590062411941328821628}{11893905246719582309809303582827776251457089805299346447702737317248087631} a^{10} - \frac{556093245772184377651358821078925567185833483041210121608841853599598528}{3964635082239860769936434527609258750485696601766448815900912439082695877} a^{9} + \frac{3413137954514789591521420945721748105068926994928569573406610530430834384}{11893905246719582309809303582827776251457089805299346447702737317248087631} a^{8} - \frac{2270096573527141480498208901062185918987008332411379508448165280922082522}{11893905246719582309809303582827776251457089805299346447702737317248087631} a^{7} - \frac{2552777927140118958094128896182072554996178484466903485863572941730720569}{11893905246719582309809303582827776251457089805299346447702737317248087631} a^{6} + \frac{4773869185087200107277418217231400157804441164553558219281858425077631356}{11893905246719582309809303582827776251457089805299346447702737317248087631} a^{5} + \frac{23252564163126431556038439370415351680800040651645461615133555755950141}{566376440319980109990919218229894107212242371680921259414416062726099411} a^{4} + \frac{3961697558121409281399359398973207030907674121793257955599789095811609125}{11893905246719582309809303582827776251457089805299346447702737317248087631} a^{3} - \frac{153167642508096105502438792148148818874048441274062602586796003637923015}{1699129320959940329972757654689682321636727115042763778243248188178298233} a^{2} + \frac{4868481140570620565267033340360062907244716443297866615587871789908671}{566376440319980109990919218229894107212242371680921259414416062726099411} a + \frac{657344177094901544479116678834102231913861187720469702934725126267975496}{11893905246719582309809303582827776251457089805299346447702737317248087631}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 136719505764000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5878656 |
| The 120 conjugacy class representatives for t21n136 are not computed |
| Character table for t21n136 is not computed |
Intermediate fields
| 7.3.7513081.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }{,}\,{\href{/LocalNumberField/2.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.7.0.1}{7} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.7.0.1}{7} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.3.3.1 | $x^{3} + 6 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 421 | Data not computed | ||||||
| 2741 | Data not computed | ||||||
| 170091127 | Data not computed | ||||||