Normalized defining polynomial
\( x^{21} - 6 x^{20} - 265 x^{19} + 2086 x^{18} + 25377 x^{17} - 275360 x^{16} - 856275 x^{15} + 17638378 x^{14} - 18094275 x^{13} - 552708742 x^{12} + 2148438139 x^{11} + 6109557374 x^{10} - 56018159197 x^{9} + 67933548604 x^{8} + 448445591701 x^{7} - 1765983911592 x^{6} + 1548738699448 x^{5} + 4466942553062 x^{4} - 15025421833232 x^{3} + 22494335989242 x^{2} - 21847470450442 x + 11400767333306 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-51586681300498332450946128895782224927239425769528531615744=-\,2^{18}\cdot 13^{2}\cdot 19^{3}\cdot 73^{12}\cdot 133087^{2}\cdot 20457487^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $624.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 19, 73, 133087, 20457487$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{10}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{11}$, $\frac{1}{77784844076689538768918022120844202198649380477688252145863146805123800779927205782213941114882529456148959093346} a^{20} + \frac{1775401915883890998257789298169017334707081107849216808048724902294046027145259466216204360307840702846749302403}{77784844076689538768918022120844202198649380477688252145863146805123800779927205782213941114882529456148959093346} a^{19} - \frac{7588078103807608408715939036581584943352197193818064015994073447191150769349628238126651292061943608736357153624}{38892422038344769384459011060422101099324690238844126072931573402561900389963602891106970557441264728074479546673} a^{18} + \frac{16177225389691929905209563792103418095442028890649143824261394192011807867035168029597429449971509107984693030429}{77784844076689538768918022120844202198649380477688252145863146805123800779927205782213941114882529456148959093346} a^{17} + \frac{16863878538289004279502486802693803405841250537171863017866411760272184912173437900910912924950337079547700666593}{77784844076689538768918022120844202198649380477688252145863146805123800779927205782213941114882529456148959093346} a^{16} - \frac{5008374249597464268654473615181281835980825259404816496849053200648750557668289218308132693083635052081141125403}{77784844076689538768918022120844202198649380477688252145863146805123800779927205782213941114882529456148959093346} a^{15} - \frac{5701415028650788736509672492233045023408723313630775898189153359884827214221760218793916345465717886786837530274}{38892422038344769384459011060422101099324690238844126072931573402561900389963602891106970557441264728074479546673} a^{14} + \frac{17939353536696827853641347544467506220796047519943981002457089466718565002139908105912157587515979626693775572088}{38892422038344769384459011060422101099324690238844126072931573402561900389963602891106970557441264728074479546673} a^{13} + \frac{19902797189791368290812079458672923486828466055464892284905492749326260385753657562816892959055404179962161415465}{77784844076689538768918022120844202198649380477688252145863146805123800779927205782213941114882529456148959093346} a^{12} + \frac{25200854898370560075372037442962104351775152862106355981314756342207303922781990201949250792227914844509455062477}{77784844076689538768918022120844202198649380477688252145863146805123800779927205782213941114882529456148959093346} a^{11} + \frac{8573839848491846926950221765046715158463310148232547197747950003955674964318721735640220217217165470101512891079}{38892422038344769384459011060422101099324690238844126072931573402561900389963602891106970557441264728074479546673} a^{10} + \frac{5852090356681243217562146401475932368136263102405843713458863723157722566198458567528417393922310102476482599221}{77784844076689538768918022120844202198649380477688252145863146805123800779927205782213941114882529456148959093346} a^{9} - \frac{32166202455901914555562991223605341714876514891559180067607676372183943750108682149774821080850601377667013169593}{77784844076689538768918022120844202198649380477688252145863146805123800779927205782213941114882529456148959093346} a^{8} - \frac{13597441618188445298243888375726557775954208800451139088735554440198168995567503709783757559147022466296438926581}{77784844076689538768918022120844202198649380477688252145863146805123800779927205782213941114882529456148959093346} a^{7} - \frac{7335944338819750308881456466696371821066193196994381398774603122127858985144759885208013446148339757611731804988}{38892422038344769384459011060422101099324690238844126072931573402561900389963602891106970557441264728074479546673} a^{6} - \frac{13378470673151751656663098584629469923233941281556827721038892219691763722569424217603350156489122140060535527142}{38892422038344769384459011060422101099324690238844126072931573402561900389963602891106970557441264728074479546673} a^{5} + \frac{16806342061445504211410266493232135703609378088192979017094942789109762780342028770298689499329464311065997291614}{38892422038344769384459011060422101099324690238844126072931573402561900389963602891106970557441264728074479546673} a^{4} - \frac{9376480034190489070779119606156118032845023187862981263336767840476061066895851174810562740181624836153728957221}{38892422038344769384459011060422101099324690238844126072931573402561900389963602891106970557441264728074479546673} a^{3} + \frac{14064355382875646938881560999477067194647348227244103012283912226867137100861430502997687373309336735147026652138}{38892422038344769384459011060422101099324690238844126072931573402561900389963602891106970557441264728074479546673} a^{2} + \frac{2015915021863327402603070765798317326799161021039861161790578337921296730529652441238208357078372593975987775455}{38892422038344769384459011060422101099324690238844126072931573402561900389963602891106970557441264728074479546673} a + \frac{3037615423495705131529581590946719892387813713053535063917369561534539724085989833703363934269980714700987427234}{38892422038344769384459011060422101099324690238844126072931573402561900389963602891106970557441264728074479546673}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1431821120410000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 734832 |
| The 72 conjugacy class representatives for t21n117 are not computed |
| Character table for t21n117 is not computed |
Intermediate fields
| 7.7.1817487424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.7.0.1}{7} }$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | R | $21$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.12.1 | $x^{14} - 2 x^{7} + 4$ | $7$ | $2$ | $12$ | $(C_7:C_3) \times C_2$ | $[\ ]_{7}^{6}$ | |
| $13$ | 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 13.3.2.3 | $x^{3} - 52$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 19.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 19.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 73 | Data not computed | ||||||
| 133087 | Data not computed | ||||||
| 20457487 | Data not computed | ||||||