Normalized defining polynomial
\( x^{21} + 57 x^{19} - 38 x^{18} + 1314 x^{17} - 1752 x^{16} + 16244 x^{15} - 31320 x^{14} + 122778 x^{13} - 276368 x^{12} + 619218 x^{11} - 1279068 x^{10} + 2090866 x^{9} - 3134952 x^{8} + 4064259 x^{7} - 4154782 x^{6} + 3539484 x^{5} - 2615832 x^{4} + 1512848 x^{3} - 586656 x^{2} + 130368 x - 12416 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-48616921823410934076113073180784620976351592448=-\,2^{14}\cdot 3^{21}\cdot 97^{2}\cdot 577^{9}\cdot 4253\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $167.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 97, 577, 4253$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} - \frac{3}{8} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{2} a^{9} + \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} + \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{64} a^{16} - \frac{1}{32} a^{15} + \frac{21}{64} a^{14} - \frac{1}{4} a^{13} + \frac{5}{32} a^{12} + \frac{1}{16} a^{11} + \frac{3}{16} a^{10} - \frac{1}{4} a^{9} - \frac{3}{32} a^{8} - \frac{1}{16} a^{7} + \frac{5}{32} a^{6} + \frac{1}{4} a^{5} - \frac{15}{32} a^{4} - \frac{3}{16} a^{3} - \frac{21}{64} a^{2} + \frac{3}{16} a - \frac{5}{16}$, $\frac{1}{512} a^{17} + \frac{17}{512} a^{15} - \frac{115}{256} a^{14} - \frac{43}{256} a^{13} + \frac{11}{64} a^{12} - \frac{27}{128} a^{11} - \frac{23}{64} a^{10} + \frac{45}{256} a^{9} + \frac{11}{32} a^{8} + \frac{65}{256} a^{7} + \frac{9}{128} a^{6} + \frac{1}{256} a^{5} - \frac{1}{64} a^{4} - \frac{237}{512} a^{3} + \frac{113}{256} a^{2} - \frac{31}{128} a + \frac{27}{64}$, $\frac{1}{4096} a^{18} + \frac{1}{2048} a^{17} + \frac{17}{4096} a^{16} - \frac{49}{1024} a^{15} - \frac{17}{2048} a^{14} + \frac{235}{1024} a^{13} - \frac{239}{1024} a^{12} - \frac{89}{256} a^{11} - \frac{651}{2048} a^{10} + \frac{473}{1024} a^{9} + \frac{497}{2048} a^{8} - \frac{27}{512} a^{7} - \frac{731}{2048} a^{6} - \frac{1}{1024} a^{5} + \frac{1795}{4096} a^{4} - \frac{159}{512} a^{3} + \frac{169}{512} a^{2} + \frac{15}{128} a + \frac{91}{256}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} + \frac{5}{32768} a^{17} + \frac{107}{16384} a^{16} + \frac{59}{16384} a^{15} + \frac{1999}{4096} a^{14} + \frac{2447}{8192} a^{13} - \frac{1381}{4096} a^{12} - \frac{3547}{16384} a^{11} + \frac{1469}{4096} a^{10} + \frac{3013}{16384} a^{9} - \frac{1289}{8192} a^{8} - \frac{1107}{16384} a^{7} + \frac{153}{512} a^{6} + \frac{14107}{32768} a^{5} + \frac{2683}{16384} a^{4} + \frac{355}{4096} a^{3} - \frac{637}{2048} a^{2} - \frac{985}{2048} a + \frac{175}{1024}$, $\frac{1}{262144} a^{20} - \frac{1}{131072} a^{19} - \frac{3}{262144} a^{18} + \frac{7}{8192} a^{17} + \frac{273}{131072} a^{16} + \frac{4057}{65536} a^{15} - \frac{22325}{65536} a^{14} + \frac{4629}{16384} a^{13} - \frac{63747}{131072} a^{12} - \frac{8801}{65536} a^{11} - \frac{18003}{131072} a^{10} + \frac{431}{16384} a^{9} + \frac{59273}{131072} a^{8} - \frac{23235}{65536} a^{7} + \frac{66459}{262144} a^{6} - \frac{32565}{65536} a^{5} + \frac{3393}{65536} a^{4} - \frac{1165}{8192} a^{3} - \frac{2259}{16384} a^{2} - \frac{405}{4096} a + \frac{175}{4096}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2183079115830000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3919104 |
| The 288 conjugacy class representatives for t21n131 are not computed |
| Character table for t21n131 is not computed |
Intermediate fields
| 7.7.192100033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.7.0.1}{7} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.20 | $x^{14} + 4 x^{13} - x^{12} - 2 x^{11} + 2 x^{10} + 2 x^{9} + 2 x^{8} + 2 x^{7} + 2 x^{6} + 4 x^{4} - 2 x^{3} + 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | 14T21 | $[2, 2, 2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| 97 | Data not computed | ||||||
| 577 | Data not computed | ||||||
| 4253 | Data not computed | ||||||