Normalized defining polynomial
\( x^{21} - 2 x^{20} - 71 x^{19} + 52 x^{18} + 2290 x^{17} + 1160 x^{16} - 40838 x^{15} - 69296 x^{14} + 389441 x^{13} + 1226046 x^{12} - 1253691 x^{11} - 9909492 x^{10} - 9327424 x^{9} + 27416228 x^{8} + 82101708 x^{7} + 75593728 x^{6} - 52429836 x^{5} - 303076248 x^{4} - 638667244 x^{3} - 923722480 x^{2} - 897312912 x - 448932688 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-407923083189506478853175676949380887024263757824=-\,2^{36}\cdot 193^{2}\cdot 809^{6}\cdot 23842201^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $185.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 193, 809, 23842201$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{14} + \frac{1}{4} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{15} + \frac{1}{8} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{16} + \frac{1}{8} a^{8} - \frac{1}{2} a^{6} + \frac{1}{4} a^{4}$, $\frac{1}{16} a^{17} - \frac{1}{8} a^{13} - \frac{1}{8} a^{11} + \frac{3}{16} a^{9} + \frac{1}{8} a^{7} - \frac{1}{2} a^{6} - \frac{3}{8} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{18} - \frac{1}{8} a^{14} - \frac{1}{8} a^{12} + \frac{3}{16} a^{10} + \frac{1}{8} a^{8} + \frac{1}{8} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{16} a^{19} - \frac{1}{8} a^{13} - \frac{1}{16} a^{11} - \frac{1}{4} a^{10} + \frac{1}{8} a^{9} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{37075819116276013279495614149151151588013168} a^{20} - \frac{764456785180021920966120304574645212029339}{37075819116276013279495614149151151588013168} a^{19} + \frac{715459375840494832241015541800026088741803}{37075819116276013279495614149151151588013168} a^{18} - \frac{540511561647074977613184080576684641396073}{18537909558138006639747807074575575794006584} a^{17} - \frac{63268672290881846003627857685770764786774}{2317238694767250829968475884321946974250823} a^{16} + \frac{175794913607214262167680806320084494539567}{18537909558138006639747807074575575794006584} a^{15} + \frac{201054510999462826301860666344146955193435}{9268954779069003319873903537287787897003292} a^{14} + \frac{2195300457120711318003775741818253982831275}{18537909558138006639747807074575575794006584} a^{13} - \frac{2251497667791231197328566029542665583595399}{37075819116276013279495614149151151588013168} a^{12} - \frac{1289867806520384920232424376579500457072985}{37075819116276013279495614149151151588013168} a^{11} + \frac{1951053733713391886659477302162037741695703}{37075819116276013279495614149151151588013168} a^{10} + \frac{319809489312186981020177519924241524551067}{4634477389534501659936951768643893948501646} a^{9} - \frac{1300218201657523681413580984756091845801713}{18537909558138006639747807074575575794006584} a^{8} + \frac{2926445646985883804159970272343973295030729}{18537909558138006639747807074575575794006584} a^{7} - \frac{619098518067660135756212169143551043915751}{18537909558138006639747807074575575794006584} a^{6} + \frac{798947332627570127674490480564950185472905}{2317238694767250829968475884321946974250823} a^{5} - \frac{430403116880561479576805288802170138926236}{2317238694767250829968475884321946974250823} a^{4} + \frac{13240821465908165126351955727460479859521}{4634477389534501659936951768643893948501646} a^{3} - \frac{941887898314667594113785885689319355877412}{2317238694767250829968475884321946974250823} a^{2} + \frac{124241813111946700178598969630070376418197}{2317238694767250829968475884321946974250823} a + \frac{113908072890267226840928505866336870168039}{2317238694767250829968475884321946974250823}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24779401704900000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 734832 |
| The 132 conjugacy class representatives for t21n118 are not computed |
| Character table for t21n118 is not computed |
Intermediate fields
| 7.7.670188544.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.7.0.1}{7} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $21$ | $21$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.4.8.8 | $x^{4} + 4 x + 2$ | $4$ | $1$ | $8$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.6.8.1 | $x^{6} + 2 x^{3} + 2$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ | |
| 2.8.18.64 | $x^{8} + 2 x^{4} + 4 x^{3} + 2$ | $8$ | $1$ | $18$ | $S_4\times C_2$ | $[2, 8/3, 8/3]_{3}^{2}$ | |
| $193$ | 193.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 193.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 193.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 193.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 193.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 193.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 193.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 193.3.2.3 | $x^{3} - 4825$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 193.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 809 | Data not computed | ||||||
| 23842201 | Data not computed | ||||||