Normalized defining polynomial
\( x^{21} + 3 x^{19} - 36 x^{16} + 51 x^{15} - 108 x^{14} - 210 x^{13} + 1028 x^{12} - 1872 x^{11} + 2298 x^{10} - 147 x^{9} - 2556 x^{8} + 3279 x^{7} - 2508 x^{6} - 828 x^{5} + 1272 x^{4} + 432 x^{3} + 288 x^{2} - 192 x - 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-39394113610756286924826653933568=-\,2^{14}\cdot 3^{21}\cdot 593^{3}\cdot 1033^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 593, 1033$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{14} - \frac{1}{4} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} + \frac{3}{8} a^{11} - \frac{1}{2} a^{10} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{6} - \frac{3}{8} a^{5} - \frac{1}{2} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{18} - \frac{1}{16} a^{16} + \frac{1}{4} a^{14} - \frac{1}{4} a^{13} + \frac{3}{16} a^{12} + \frac{1}{4} a^{11} + \frac{1}{8} a^{10} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{3}{8} a^{7} - \frac{3}{16} a^{6} - \frac{1}{4} a^{5} - \frac{5}{16} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{19} - \frac{1}{32} a^{17} + \frac{1}{8} a^{15} - \frac{1}{8} a^{14} + \frac{3}{32} a^{13} + \frac{1}{8} a^{12} + \frac{1}{16} a^{11} - \frac{3}{8} a^{10} + \frac{1}{4} a^{9} + \frac{5}{16} a^{8} + \frac{13}{32} a^{7} - \frac{1}{8} a^{6} - \frac{5}{32} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{747179833814503263697668786496} a^{20} - \frac{1912960104346849025853082769}{186794958453625815924417196624} a^{19} + \frac{14703995091196980158569159227}{747179833814503263697668786496} a^{18} - \frac{5252576668442815107954824625}{186794958453625815924417196624} a^{17} - \frac{5943945155740694650730538593}{93397479226812907962208598312} a^{16} + \frac{35196106148148820740214234245}{186794958453625815924417196624} a^{15} - \frac{339553389347866155859874665229}{747179833814503263697668786496} a^{14} + \frac{33214774526104118680792340457}{93397479226812907962208598312} a^{13} + \frac{133567544141980202434026122099}{373589916907251631848834393248} a^{12} - \frac{78867909843789861163163014399}{186794958453625815924417196624} a^{11} - \frac{4291038037662374517954775404}{11674684903351613495276074789} a^{10} - \frac{26389717843489503106420876619}{373589916907251631848834393248} a^{9} - \frac{175499356959947388817357306235}{747179833814503263697668786496} a^{8} - \frac{4477496377612776544732362603}{11674684903351613495276074789} a^{7} - \frac{115482848929550759972732092313}{747179833814503263697668786496} a^{6} + \frac{785712152064988386469200381}{23349369806703226990552149578} a^{5} - \frac{68307167650991508464016515541}{186794958453625815924417196624} a^{4} + \frac{6410832403895716075671897101}{23349369806703226990552149578} a^{3} + \frac{3501381928799883179357800594}{11674684903351613495276074789} a^{2} - \frac{596583812934769958087742583}{23349369806703226990552149578} a + \frac{3268946490656908015738307157}{11674684903351613495276074789}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 41507831.5952 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1410877440 |
| The 429 conjugacy class representatives for t21n152 are not computed |
| Character table for t21n152 is not computed |
Intermediate fields
| 7.3.612569.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.9.0.1}{9} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | $15{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | $18{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.29 | $x^{14} + 2 x^{13} - x^{12} + 2 x^{7} + 2 x^{5} + 2 x^{3} + 2 x - 1$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2]^{14}$ | |
| $3$ | 3.9.9.6 | $x^{9} + 3 x^{7} + 3 x^{6} + 18 x^{4} + 54$ | $3$ | $3$ | $9$ | $S_3\times C_3$ | $[3/2]_{2}^{3}$ |
| 3.12.12.16 | $x^{12} + 24 x^{11} + 42 x^{10} - 39 x^{9} - 99 x^{8} + 18 x^{7} - 27 x^{6} - 54 x^{4} + 27 x^{3} - 81 x + 81$ | $3$ | $4$ | $12$ | 12T170 | $[3/2, 3/2, 3/2, 3/2]_{2}^{4}$ | |
| 593 | Data not computed | ||||||
| 1033 | Data not computed | ||||||