Normalized defining polynomial
\( x^{21} + 39 x^{19} - 26 x^{18} + 594 x^{17} - 792 x^{16} + 4692 x^{15} - 8856 x^{14} + 22266 x^{13} - 44944 x^{12} + 68904 x^{11} - 103632 x^{10} + 118468 x^{9} - 86544 x^{8} + 29091 x^{7} + 50834 x^{6} - 134244 x^{5} + 156456 x^{4} - 105584 x^{3} + 42336 x^{2} - 9408 x + 896 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-37494305928518480292756793661064283963392=-\,2^{14}\cdot 3^{21}\cdot 7^{2}\cdot 71^{3}\cdot 547\cdot 283583^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $85.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 71, 547, 283583$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} + \frac{3}{8} a^{13} + \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{2} a^{9} + \frac{1}{4} a^{7} - \frac{1}{2} a^{3} + \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{64} a^{16} - \frac{1}{32} a^{15} + \frac{3}{64} a^{14} - \frac{1}{2} a^{13} - \frac{11}{32} a^{12} - \frac{7}{16} a^{11} + \frac{3}{16} a^{10} - \frac{1}{4} a^{9} + \frac{13}{32} a^{8} - \frac{1}{16} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} + \frac{1}{16} a^{4} - \frac{3}{8} a^{3} - \frac{13}{64} a^{2} - \frac{5}{16} a + \frac{3}{16}$, $\frac{1}{512} a^{17} - \frac{1}{512} a^{15} - \frac{109}{256} a^{14} - \frac{43}{256} a^{13} - \frac{9}{64} a^{12} + \frac{5}{128} a^{11} + \frac{9}{64} a^{10} - \frac{35}{256} a^{9} + \frac{11}{32} a^{8} - \frac{5}{64} a^{7} - \frac{5}{32} a^{6} - \frac{7}{128} a^{5} - \frac{9}{32} a^{4} + \frac{131}{512} a^{3} - \frac{119}{256} a^{2} - \frac{7}{128} a - \frac{29}{64}$, $\frac{1}{4096} a^{18} + \frac{1}{2048} a^{17} - \frac{1}{4096} a^{16} - \frac{55}{1024} a^{15} - \frac{5}{2048} a^{14} + \frac{195}{1024} a^{13} + \frac{225}{1024} a^{12} + \frac{39}{256} a^{11} + \frac{549}{2048} a^{10} + \frac{9}{1024} a^{9} + \frac{103}{512} a^{8} - \frac{21}{128} a^{7} - \frac{175}{1024} a^{6} - \frac{89}{512} a^{5} + \frac{1379}{4096} a^{4} - \frac{253}{512} a^{3} - \frac{255}{512} a^{2} - \frac{9}{128} a + \frac{99}{256}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} - \frac{13}{32768} a^{17} - \frac{107}{16384} a^{16} + \frac{655}{16384} a^{15} + \frac{1129}{4096} a^{14} - \frac{1969}{8192} a^{13} + \frac{427}{4096} a^{12} + \frac{6869}{16384} a^{11} - \frac{819}{4096} a^{10} - \frac{365}{1024} a^{9} - \frac{607}{2048} a^{8} + \frac{3905}{8192} a^{7} - \frac{275}{1024} a^{6} + \frac{1555}{32768} a^{5} - \frac{7197}{16384} a^{4} - \frac{1809}{4096} a^{3} - \frac{277}{2048} a^{2} - \frac{49}{2048} a + \frac{471}{1024}$, $\frac{1}{262144} a^{20} - \frac{1}{131072} a^{19} - \frac{21}{262144} a^{18} - \frac{15}{16384} a^{17} + \frac{441}{131072} a^{16} + \frac{2913}{65536} a^{15} + \frac{2547}{65536} a^{14} - \frac{4867}{16384} a^{13} + \frac{10285}{131072} a^{12} + \frac{5231}{65536} a^{11} - \frac{7693}{16384} a^{10} - \frac{19}{16384} a^{9} + \frac{15433}{65536} a^{8} - \frac{1291}{32768} a^{7} - \frac{81581}{262144} a^{6} + \frac{21755}{65536} a^{5} - \frac{10815}{65536} a^{4} - \frac{2067}{8192} a^{3} - \frac{6747}{16384} a^{2} + \frac{211}{4096} a - \frac{1577}{4096}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1320972873570 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1410877440 |
| The 429 conjugacy class representatives for t21n152 are not computed |
| Character table for t21n152 is not computed |
Intermediate fields
| 7.7.20134393.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | $21$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.9.0.1}{9} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $15{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.5 | $x^{14} + 2 x^{13} + x^{12} + 2 x^{11} - 2 x^{10} + 2 x^{8} + 4 x^{7} - 2 x^{6} + 4 x^{5} + 4 x^{4} + 2 x^{2} - 3$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 71 | Data not computed | ||||||
| 547 | Data not computed | ||||||
| 283583 | Data not computed | ||||||