Normalized defining polynomial
\( x^{21} + 39 x^{19} - 26 x^{18} + 486 x^{17} - 648 x^{16} + 2241 x^{15} - 4050 x^{14} + 2538 x^{13} - 168 x^{12} - 11124 x^{11} + 35832 x^{10} - 59945 x^{9} + 81252 x^{8} - 95367 x^{7} + 85054 x^{6} - 57132 x^{5} + 32472 x^{4} - 16208 x^{3} + 6048 x^{2} - 1344 x + 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3419995858430775529141866755724737853735124992=-\,2^{14}\cdot 3^{21}\cdot 43^{18}\cdot 79\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $147.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 43, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{56} a^{15} - \frac{1}{2} a^{14} + \frac{3}{56} a^{13} + \frac{13}{28} a^{12} + \frac{1}{28} a^{11} + \frac{2}{7} a^{10} + \frac{17}{56} a^{9} + \frac{1}{28} a^{8} - \frac{1}{28} a^{7} + \frac{1}{14} a^{5} - \frac{3}{7} a^{4} - \frac{17}{56} a^{3} + \frac{1}{7} a^{2} - \frac{19}{56} a + \frac{5}{28}$, $\frac{1}{448} a^{16} - \frac{1}{224} a^{15} + \frac{3}{448} a^{14} + \frac{5}{14} a^{13} + \frac{31}{224} a^{12} + \frac{3}{112} a^{11} - \frac{183}{448} a^{10} - \frac{1}{112} a^{9} + \frac{53}{224} a^{8} - \frac{27}{112} a^{7} + \frac{1}{112} a^{6} + \frac{5}{28} a^{5} - \frac{137}{448} a^{4} + \frac{13}{32} a^{3} - \frac{29}{64} a^{2} - \frac{51}{112} a + \frac{37}{112}$, $\frac{1}{3584} a^{17} - \frac{1}{3584} a^{15} - \frac{365}{1792} a^{14} + \frac{415}{1792} a^{13} + \frac{73}{448} a^{12} - \frac{159}{3584} a^{11} + \frac{711}{1792} a^{10} + \frac{7}{256} a^{9} + \frac{125}{448} a^{8} - \frac{389}{896} a^{7} - \frac{101}{448} a^{6} + \frac{1367}{3584} a^{5} - \frac{247}{896} a^{4} + \frac{151}{512} a^{3} - \frac{529}{1792} a^{2} + \frac{383}{896} a - \frac{187}{448}$, $\frac{1}{28672} a^{18} + \frac{1}{14336} a^{17} - \frac{1}{28672} a^{16} - \frac{55}{7168} a^{15} - \frac{301}{2048} a^{14} - \frac{121}{1024} a^{13} + \frac{7153}{28672} a^{12} - \frac{77}{256} a^{11} - \frac{6977}{14336} a^{10} - \frac{2901}{7168} a^{9} - \frac{529}{7168} a^{8} - \frac{85}{1792} a^{7} - \frac{3833}{28672} a^{6} - \frac{497}{2048} a^{5} + \frac{8297}{28672} a^{4} - \frac{15}{896} a^{3} - \frac{1353}{3584} a^{2} - \frac{367}{896} a - \frac{45}{256}$, $\frac{1}{229376} a^{19} - \frac{1}{57344} a^{18} - \frac{13}{229376} a^{17} - \frac{107}{114688} a^{16} + \frac{601}{114688} a^{15} + \frac{1927}{4096} a^{14} - \frac{103591}{229376} a^{13} + \frac{56149}{114688} a^{12} + \frac{37327}{114688} a^{11} - \frac{7881}{28672} a^{10} - \frac{23059}{57344} a^{9} + \frac{13193}{28672} a^{8} - \frac{32537}{229376} a^{7} + \frac{2005}{28672} a^{6} + \frac{95101}{229376} a^{5} + \frac{26069}{114688} a^{4} + \frac{1055}{28672} a^{3} - \frac{1795}{14336} a^{2} - \frac{6151}{14336} a - \frac{3151}{7168}$, $\frac{1}{1835008} a^{20} - \frac{1}{917504} a^{19} - \frac{3}{262144} a^{18} - \frac{15}{114688} a^{17} + \frac{387}{917504} a^{16} + \frac{429}{65536} a^{15} + \frac{800361}{1835008} a^{14} - \frac{212137}{458752} a^{13} - \frac{210823}{917504} a^{12} - \frac{20325}{65536} a^{11} + \frac{125641}{458752} a^{10} + \frac{48315}{114688} a^{9} - \frac{247433}{1835008} a^{8} + \frac{10541}{131072} a^{7} + \frac{815309}{1835008} a^{6} - \frac{152407}{458752} a^{5} - \frac{12781}{458752} a^{4} - \frac{9913}{28672} a^{3} + \frac{27123}{114688} a^{2} - \frac{555}{28672} a - \frac{11343}{28672}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 786432886320000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1959552 |
| The 333 conjugacy class representatives for t21n123 are not computed |
| Character table for t21n123 is not computed |
Intermediate fields
| 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.7.0.1}{7} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.14 | $x^{14} - x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{9} + 2 x^{7} + 2 x^{6} + 2 x^{5} + 2 x^{4} + 2 x^{2} - 1$ | $2$ | $7$ | $14$ | 14T9 | $[2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| $43$ | 43.7.6.1 | $x^{7} - 43$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 43.7.6.1 | $x^{7} - 43$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 43.7.6.1 | $x^{7} - 43$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| $79$ | $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 79.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |