Normalized defining polynomial
\( x^{21} - 5 x^{20} - 146 x^{19} + 480 x^{18} + 9933 x^{17} - 12305 x^{16} - 392104 x^{15} - 318992 x^{14} + 8812781 x^{13} + 25420683 x^{12} - 83897322 x^{11} - 548389436 x^{10} - 477355276 x^{9} + 3751059111 x^{8} + 13661117109 x^{7} + 14746661675 x^{6} - 22116563498 x^{5} - 98567171796 x^{4} - 156559935410 x^{3} - 137413776641 x^{2} - 65774960312 x - 13243017217 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-323819127905342656757725049443659148215578969036323=-\,7^{3}\cdot 13^{8}\cdot 109^{7}\cdot 229^{2}\cdot 6427^{2}\cdot 1709599^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $254.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 13, 109, 229, 6427, 1709599$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{3780405140166165405239049732880231398584943016649737921335948459788811963467368666905724233287} a^{20} - \frac{279983900612030562154600996955918300606865912705244528074000738648485697461059298006089097019}{3780405140166165405239049732880231398584943016649737921335948459788811963467368666905724233287} a^{19} - \frac{511439475254558864479339921784907107163735108258031646366013700042591146903095716564168822015}{3780405140166165405239049732880231398584943016649737921335948459788811963467368666905724233287} a^{18} - \frac{1405136043709259470728251700211238564121725879688680727486089556805905189737250863640317481594}{3780405140166165405239049732880231398584943016649737921335948459788811963467368666905724233287} a^{17} + \frac{1149219224051136057473286416759198331288576029316952650439962659435229022619151225691887538442}{3780405140166165405239049732880231398584943016649737921335948459788811963467368666905724233287} a^{16} - \frac{1169360566401917407125384228763670568025662678155813981056367352113215658457522303452572284707}{3780405140166165405239049732880231398584943016649737921335948459788811963467368666905724233287} a^{15} + \frac{307556535096127596247290113650474949419247745854177450179396595019900311635826717491514687358}{3780405140166165405239049732880231398584943016649737921335948459788811963467368666905724233287} a^{14} + \frac{822879919827335828703932401622259147042513460235996816884213013916983926543194231825643922643}{3780405140166165405239049732880231398584943016649737921335948459788811963467368666905724233287} a^{13} + \frac{1654057455793418299167039504826347649770650214961665335177978179238870802362323701420216192427}{3780405140166165405239049732880231398584943016649737921335948459788811963467368666905724233287} a^{12} - \frac{724740140304578886264124335790943841596781295491685012163723440766295004921145361013970187016}{3780405140166165405239049732880231398584943016649737921335948459788811963467368666905724233287} a^{11} + \frac{1684870401352902379802028482858665758863289930990500019962445217526030199710176982507259814224}{3780405140166165405239049732880231398584943016649737921335948459788811963467368666905724233287} a^{10} + \frac{107015023002901821467763945599867073091585286091073453200184128885384727938786735996035098034}{3780405140166165405239049732880231398584943016649737921335948459788811963467368666905724233287} a^{9} - \frac{121181714577223378481529717435999103011362002966744332110860083568316351003151892986035284684}{290800395397397338864542287144633184506534078203825993948919112291447074112874512838901864099} a^{8} + \frac{593439368694226870587456884656740458965571046203340610393248365277784420064581445315079943544}{3780405140166165405239049732880231398584943016649737921335948459788811963467368666905724233287} a^{7} + \frac{248575016885970858285794884800956399755078685475699411685164130067055798741588627065637286077}{3780405140166165405239049732880231398584943016649737921335948459788811963467368666905724233287} a^{6} + \frac{7499918891815400325817878113596812253694578567771999627619437628894051368312101548202698227}{3780405140166165405239049732880231398584943016649737921335948459788811963467368666905724233287} a^{5} + \frac{1886643719746782928432824366086578602624896913943988171464248792622139927817062830371886076966}{3780405140166165405239049732880231398584943016649737921335948459788811963467368666905724233287} a^{4} - \frac{1838696380420626175947628442406515754605886660509568521026585840868772355515189185729249118485}{3780405140166165405239049732880231398584943016649737921335948459788811963467368666905724233287} a^{3} + \frac{1831062611949627717455725505636458412654188562229612776835904922565316707871597623657623198102}{3780405140166165405239049732880231398584943016649737921335948459788811963467368666905724233287} a^{2} - \frac{148025572898670013892379470166780093348543092805031467843204723370715028216571634561823987825}{3780405140166165405239049732880231398584943016649737921335948459788811963467368666905724233287} a - \frac{1599526347518616931035897821916754543390920805726259683138924252263495414585909176665265058358}{3780405140166165405239049732880231398584943016649737921335948459788811963467368666905724233287}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 80451978526600000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5878656 |
| The 84 conjugacy class representatives for t21n135 are not computed |
| Character table for t21n135 is not computed |
Intermediate fields
| 7.3.2007889.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }{,}\,{\href{/LocalNumberField/2.7.0.1}{7} }$ | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.7.0.1}{7} }$ | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.8.6.4 | $x^{8} - 13 x^{4} + 338$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ | |
| $109$ | $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 109.2.1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.12.6.1 | $x^{12} + 28490638 x^{6} - 15386239549 x^{2} + 202929113411761$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 229 | Data not computed | ||||||
| 6427 | Data not computed | ||||||
| 1709599 | Data not computed | ||||||