Normalized defining polynomial
\( x^{21} - 3 x^{20} - 121 x^{19} + 520 x^{18} + 5673 x^{17} - 34123 x^{16} - 113785 x^{15} + 1128771 x^{14} + 76521 x^{13} - 19817069 x^{12} + 39581265 x^{11} + 156838536 x^{10} - 718476095 x^{9} + 165478618 x^{8} + 4650794255 x^{7} - 10553757523 x^{6} + 58638956 x^{5} + 39666054316 x^{4} - 82890643198 x^{3} + 84623317925 x^{2} - 45571419390 x + 10411723987 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-319818187070222575563949307127106042884938167=-\,72871^{2}\cdot 7215127^{3}\cdot 12662833^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $131.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $72871, 7215127, 12662833$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{63350917017958414114148173014163785238623439729334581517914118776667281} a^{20} - \frac{278525250946532895238343475928921927713315989626514976607384488364562}{63350917017958414114148173014163785238623439729334581517914118776667281} a^{19} - \frac{31270667117883991937858549332639460511874108856876263416012445837415133}{63350917017958414114148173014163785238623439729334581517914118776667281} a^{18} + \frac{20242295532684703585724319031275357708373394140683819850236678098766639}{63350917017958414114148173014163785238623439729334581517914118776667281} a^{17} - \frac{21842822042672626239593144240652851536255729404010716555092695405002330}{63350917017958414114148173014163785238623439729334581517914118776667281} a^{16} - \frac{13472291980024798070973768121205526874610843824953039290647355133638522}{63350917017958414114148173014163785238623439729334581517914118776667281} a^{15} - \frac{3187875745589375554198580905132268529226703451279857187026702198283979}{9050131002565487730592596144880540748374777104190654502559159825238183} a^{14} + \frac{616118010542549453059146161951079309989607951640014676881734227506002}{9050131002565487730592596144880540748374777104190654502559159825238183} a^{13} + \frac{16458575487861697721915640987049376977943887303946957360038028347483312}{63350917017958414114148173014163785238623439729334581517914118776667281} a^{12} - \frac{25324747637008303069769025832065420554143973246106754598454344415744829}{63350917017958414114148173014163785238623439729334581517914118776667281} a^{11} - \frac{16768866246163187366634758626714161723251832066507590779628470689346522}{63350917017958414114148173014163785238623439729334581517914118776667281} a^{10} + \frac{30132691980269185079789819305516634371352945385958443824836324837890027}{63350917017958414114148173014163785238623439729334581517914118776667281} a^{9} - \frac{30488833705166779421701412454372443223341373915627036808386411461248217}{63350917017958414114148173014163785238623439729334581517914118776667281} a^{8} + \frac{27540104172964004492239179068830439662613770476039014064806055803544308}{63350917017958414114148173014163785238623439729334581517914118776667281} a^{7} + \frac{24063851405549288645337368914490312654151567019921742423995054049875986}{63350917017958414114148173014163785238623439729334581517914118776667281} a^{6} + \frac{29998875653833189857381214526600691482921391102551628331244367280899661}{63350917017958414114148173014163785238623439729334581517914118776667281} a^{5} - \frac{618200914610607654204059230940541045148780774798738026893370953327431}{63350917017958414114148173014163785238623439729334581517914118776667281} a^{4} - \frac{469957504771251276357626406882831640344071739539749552432992016505863}{9050131002565487730592596144880540748374777104190654502559159825238183} a^{3} + \frac{16982814408396506154614224276847960907851807729578163137985012236395524}{63350917017958414114148173014163785238623439729334581517914118776667281} a^{2} - \frac{7634082203782813000035645013363802292928054009827118050890763374246826}{63350917017958414114148173014163785238623439729334581517914118776667281} a - \frac{1600184273406084838876129340949953145744919137310524466560930218374801}{9050131002565487730592596144880540748374777104190654502559159825238183}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 59119060181600 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 705438720 |
| The 261 conjugacy class representatives for t21n149 are not computed |
| Character table for t21n149 is not computed |
Intermediate fields
| 7.5.7215127.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 72871 | Data not computed | ||||||
| 7215127 | Data not computed | ||||||
| 12662833 | Data not computed | ||||||