Normalized defining polynomial
\( x^{21} - 63 x^{19} - 84 x^{18} + 1512 x^{17} + 3850 x^{16} - 15029 x^{15} - 63668 x^{14} + 19355 x^{13} + 408198 x^{12} + 542696 x^{11} - 448728 x^{10} - 1801933 x^{9} - 2364768 x^{8} - 3841877 x^{7} - 7427812 x^{6} - 9136848 x^{5} - 5209666 x^{4} + 684425 x^{3} + 2417492 x^{2} + 819441 x - 32894 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-31032827270403258915448227917250560000000=-\,2^{20}\cdot 5^{7}\cdot 7^{35}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{20} a^{14} - \frac{1}{10} a^{12} - \frac{1}{10} a^{11} - \frac{1}{10} a^{10} - \frac{1}{10} a^{7} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} + \frac{3}{10} a^{3} + \frac{1}{20} a^{2} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{60} a^{15} - \frac{7}{60} a^{13} + \frac{1}{20} a^{12} - \frac{1}{30} a^{11} + \frac{1}{12} a^{10} - \frac{1}{6} a^{9} + \frac{13}{60} a^{8} + \frac{1}{6} a^{7} - \frac{3}{20} a^{6} + \frac{7}{30} a^{5} - \frac{3}{20} a^{4} - \frac{19}{60} a^{3} + \frac{9}{20} a^{2} + \frac{13}{60} a + \frac{1}{6}$, $\frac{1}{120} a^{16} - \frac{1}{120} a^{15} + \frac{1}{60} a^{14} + \frac{1}{12} a^{13} + \frac{7}{120} a^{12} - \frac{11}{120} a^{11} + \frac{9}{40} a^{10} + \frac{23}{120} a^{9} - \frac{1}{40} a^{8} - \frac{7}{120} a^{7} + \frac{23}{120} a^{6} + \frac{31}{120} a^{5} + \frac{7}{15} a^{4} - \frac{5}{12} a^{3} - \frac{7}{24} a^{2} - \frac{1}{8} a - \frac{29}{60}$, $\frac{1}{480} a^{17} + \frac{1}{160} a^{15} - \frac{1}{40} a^{14} - \frac{9}{160} a^{13} + \frac{5}{48} a^{12} - \frac{1}{16} a^{11} - \frac{1}{40} a^{10} - \frac{1}{16} a^{9} + \frac{19}{120} a^{8} - \frac{1}{80} a^{7} - \frac{7}{40} a^{6} - \frac{59}{480} a^{5} + \frac{1}{40} a^{4} - \frac{39}{160} a^{3} + \frac{1}{3} a^{2} + \frac{5}{96} a - \frac{11}{48}$, $\frac{1}{960} a^{18} - \frac{1}{960} a^{17} + \frac{1}{320} a^{16} - \frac{7}{960} a^{15} - \frac{1}{64} a^{14} + \frac{7}{320} a^{13} + \frac{1}{15} a^{12} + \frac{1}{480} a^{11} + \frac{71}{480} a^{10} + \frac{13}{480} a^{9} - \frac{49}{480} a^{8} - \frac{119}{480} a^{7} - \frac{167}{960} a^{6} + \frac{61}{320} a^{5} + \frac{53}{320} a^{4} - \frac{71}{192} a^{3} - \frac{93}{320} a^{2} - \frac{271}{960} a + \frac{19}{96}$, $\frac{1}{3840} a^{19} + \frac{1}{1920} a^{17} + \frac{1}{320} a^{16} + \frac{1}{384} a^{15} - \frac{1}{384} a^{14} - \frac{331}{3840} a^{13} + \frac{209}{1920} a^{12} - \frac{17}{240} a^{11} + \frac{39}{160} a^{10} + \frac{67}{480} a^{9} - \frac{1}{16} a^{8} + \frac{779}{3840} a^{7} - \frac{11}{80} a^{6} - \frac{229}{1920} a^{5} - \frac{101}{960} a^{4} + \frac{1}{640} a^{3} - \frac{297}{640} a^{2} + \frac{549}{1280} a - \frac{267}{640}$, $\frac{1}{1523159131126086180451405792646407680} a^{20} + \frac{45642830440733632040390380153717}{1523159131126086180451405792646407680} a^{19} - \frac{165927554171104609557135400696303}{761579565563043090225702896323203840} a^{18} + \frac{27910496738800659203148238333789}{50771971037536206015046859754880256} a^{17} + \frac{1030535103919607173403371279850129}{253859855187681030075234298774401280} a^{16} + \frac{114906654321151835408031396574483}{190394891390760772556425724080800960} a^{15} + \frac{26177144409203653305029118376299971}{1523159131126086180451405792646407680} a^{14} + \frac{115978381422319806386436664729393163}{1523159131126086180451405792646407680} a^{13} + \frac{2423519139708299574910412517504515}{50771971037536206015046859754880256} a^{12} - \frac{2925415957759513356818065737848641}{190394891390760772556425724080800960} a^{11} - \frac{11689501942630052772368446403381227}{47598722847690193139106431020200240} a^{10} + \frac{78660203372768232770131630961701}{740836153271442694772084529497280} a^{9} + \frac{375837628866889318610793524561068699}{1523159131126086180451405792646407680} a^{8} - \frac{207275957701681647032659221756231017}{1523159131126086180451405792646407680} a^{7} + \frac{87446696118078478026159546870275267}{761579565563043090225702896323203840} a^{6} - \frac{291256313101755012454381590990857851}{761579565563043090225702896323203840} a^{5} + \frac{72386646353782560886139071090991021}{152315913112608618045140579264640768} a^{4} - \frac{5945792847598777847049189152123823}{63464963796920257518808574693600320} a^{3} + \frac{391866342953508842846834024404422689}{1523159131126086180451405792646407680} a^{2} - \frac{450938154072315757652221704494707031}{1523159131126086180451405792646407680} a - \frac{13161735233489736979959204864309303}{253859855187681030075234298774401280}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 84536711969500 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 588 |
| The 19 conjugacy class representatives for t21n23 |
| Character table for t21n23 |
Intermediate fields
| 3.1.980.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 14 sibling: | data not computed |
| Degree 21 sibling: | data not computed |
| Degree 28 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{7}$ | R | R | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.7.0.1}{7} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.7.0.1}{7} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7 | Data not computed | ||||||