Normalized defining polynomial
\( x^{21} - 3 x^{19} - 2 x^{18} - 27 x^{17} - 36 x^{16} + 96 x^{15} + 216 x^{14} + 225 x^{13} + 248 x^{12} - 999 x^{11} - 3954 x^{10} - 4655 x^{9} - 684 x^{8} + 5847 x^{7} + 14366 x^{6} + 22572 x^{5} + 23256 x^{4} + 15184 x^{3} + 6048 x^{2} + 1344 x + 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-3071123628635589927498516790591488=-\,2^{14}\cdot 3^{21}\cdot 61^{3}\cdot 42899^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 61, 42899$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} + \frac{1}{8} a^{13} + \frac{1}{4} a^{12} + \frac{1}{8} a^{11} - \frac{1}{2} a^{9} + \frac{1}{8} a^{7} - \frac{1}{2} a^{6} - \frac{3}{8} a^{5} + \frac{1}{4} a^{4} - \frac{3}{8} a^{3} + \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} + \frac{25}{64} a^{14} - \frac{1}{4} a^{13} - \frac{19}{64} a^{12} + \frac{3}{32} a^{11} + \frac{5}{16} a^{10} + \frac{17}{64} a^{8} + \frac{13}{32} a^{7} - \frac{27}{64} a^{6} + \frac{3}{8} a^{5} + \frac{9}{64} a^{4} - \frac{5}{32} a^{3} + \frac{11}{64} a^{2} - \frac{3}{16} a - \frac{5}{16}$, $\frac{1}{512} a^{17} + \frac{21}{512} a^{15} - \frac{33}{256} a^{14} + \frac{13}{512} a^{13} + \frac{27}{128} a^{12} + \frac{1}{64} a^{11} - \frac{21}{64} a^{10} - \frac{239}{512} a^{9} - \frac{17}{64} a^{8} - \frac{207}{512} a^{7} + \frac{7}{256} a^{6} - \frac{103}{512} a^{5} + \frac{57}{128} a^{4} + \frac{223}{512} a^{3} - \frac{17}{256} a^{2} + \frac{49}{128} a + \frac{21}{64}$, $\frac{1}{4096} a^{18} - \frac{1}{2048} a^{17} + \frac{21}{4096} a^{16} - \frac{27}{1024} a^{15} + \frac{657}{4096} a^{14} + \frac{41}{2048} a^{13} - \frac{45}{256} a^{12} - \frac{23}{512} a^{11} + \frac{609}{4096} a^{10} + \frac{171}{2048} a^{9} - \frac{1471}{4096} a^{8} - \frac{149}{1024} a^{7} - \frac{131}{4096} a^{6} - \frac{807}{2048} a^{5} + \frac{279}{4096} a^{4} + \frac{33}{128} a^{3} - \frac{95}{512} a^{2} - \frac{55}{128} a - \frac{85}{256}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} + \frac{25}{32768} a^{17} - \frac{75}{16384} a^{16} + \frac{873}{32768} a^{15} - \frac{333}{2048} a^{14} - \frac{221}{8192} a^{13} + \frac{669}{4096} a^{12} + \frac{977}{32768} a^{11} - \frac{1243}{8192} a^{10} - \frac{2155}{32768} a^{9} + \frac{5269}{16384} a^{8} - \frac{7131}{32768} a^{7} - \frac{1193}{4096} a^{6} - \frac{8781}{32768} a^{5} + \frac{249}{16384} a^{4} + \frac{1689}{4096} a^{3} + \frac{497}{2048} a^{2} + \frac{903}{2048} a + \frac{341}{1024}$, $\frac{1}{262144} a^{20} + \frac{1}{131072} a^{19} + \frac{1}{262144} a^{18} - \frac{27}{262144} a^{16} - \frac{45}{131072} a^{15} - \frac{21}{65536} a^{14} + \frac{3}{16384} a^{13} + \frac{321}{262144} a^{12} + \frac{445}{131072} a^{11} + \frac{781}{262144} a^{10} - \frac{299}{32768} a^{9} - \frac{9439}{262144} a^{8} - \frac{9781}{131072} a^{7} - \frac{33277}{262144} a^{6} - \frac{13047}{65536} a^{5} - \frac{20451}{65536} a^{4} + \frac{1903}{4096} a^{3} - \frac{211}{16384} a^{2} - \frac{11}{4096} a - \frac{1}{4096}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 403309102.408 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1410877440 |
| The 429 conjugacy class representatives for t21n152 are not computed |
| Character table for t21n152 is not computed |
Intermediate fields
| 7.5.2616839.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | $15{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | $15{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | $18{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.1 | $x^{14} + 3 x^{12} - 2 x^{11} - 2 x^{10} + 4 x^{9} + 2 x^{7} + 2 x^{5} + 2 x^{4} - 2 x^{3} + 2 x^{2} + 4 x - 3$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| $61$ | 61.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 61.6.3.2 | $x^{6} - 3721 x^{2} + 2269810$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 61.12.0.1 | $x^{12} - x + 44$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 42899 | Data not computed | ||||||