Normalized defining polynomial
\( x^{21} - 5 x^{20} - 162 x^{19} + 1164 x^{18} + 9298 x^{17} - 103335 x^{16} - 121449 x^{15} + 4484709 x^{14} - 10039699 x^{13} - 91309246 x^{12} + 508027928 x^{11} + 248421674 x^{10} - 9128617007 x^{9} + 23259829893 x^{8} + 41621122062 x^{7} - 352710251075 x^{6} + 637129534424 x^{5} + 698222785081 x^{4} - 5446453497276 x^{3} + 11279843000465 x^{2} - 11486117124675 x + 4938448359709 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-301774308463597940020774144983778249139309451403045912576=-\,2^{14}\cdot 29^{18}\cdot 853^{2}\cdot 10967310769^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $489.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 29, 853, 10967310769$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{17} a^{16} + \frac{5}{17} a^{15} - \frac{2}{17} a^{14} + \frac{3}{17} a^{13} - \frac{4}{17} a^{12} + \frac{3}{17} a^{11} + \frac{7}{17} a^{10} - \frac{4}{17} a^{8} - \frac{8}{17} a^{7} + \frac{8}{17} a^{6} + \frac{1}{17} a^{5} - \frac{5}{17} a^{4} + \frac{4}{17} a^{2} - \frac{6}{17} a - \frac{3}{17}$, $\frac{1}{17} a^{17} + \frac{7}{17} a^{15} - \frac{4}{17} a^{14} - \frac{2}{17} a^{13} + \frac{6}{17} a^{12} - \frac{8}{17} a^{11} - \frac{1}{17} a^{10} - \frac{4}{17} a^{9} - \frac{5}{17} a^{8} - \frac{3}{17} a^{7} - \frac{5}{17} a^{6} + \frac{7}{17} a^{5} + \frac{8}{17} a^{4} + \frac{4}{17} a^{3} + \frac{8}{17} a^{2} - \frac{7}{17} a - \frac{2}{17}$, $\frac{1}{17} a^{18} - \frac{5}{17} a^{15} - \frac{5}{17} a^{14} + \frac{2}{17} a^{13} + \frac{3}{17} a^{12} - \frac{5}{17} a^{11} - \frac{2}{17} a^{10} - \frac{5}{17} a^{9} + \frac{8}{17} a^{8} + \frac{2}{17} a^{6} + \frac{1}{17} a^{5} + \frac{5}{17} a^{4} + \frac{8}{17} a^{3} - \frac{1}{17} a^{2} + \frac{6}{17} a + \frac{4}{17}$, $\frac{1}{17} a^{19} + \frac{3}{17} a^{15} - \frac{8}{17} a^{14} + \frac{1}{17} a^{13} - \frac{8}{17} a^{12} - \frac{4}{17} a^{11} - \frac{4}{17} a^{10} + \frac{8}{17} a^{9} - \frac{3}{17} a^{8} - \frac{4}{17} a^{7} + \frac{7}{17} a^{6} - \frac{7}{17} a^{5} - \frac{1}{17} a^{3} - \frac{8}{17} a^{2} + \frac{8}{17} a + \frac{2}{17}$, $\frac{1}{117803804433918257037591108215961488912378364464610770534009260121359} a^{20} - \frac{1572538687501806392218706754284579758674376904334709314563128634706}{117803804433918257037591108215961488912378364464610770534009260121359} a^{19} + \frac{992427281434877083883733939389109018244016523999018763821472379637}{117803804433918257037591108215961488912378364464610770534009260121359} a^{18} - \frac{2480148837439445815090361038709366490077116922917235383546629740250}{117803804433918257037591108215961488912378364464610770534009260121359} a^{17} - \frac{360101553656879060421312472446209004557594010482090071132979766750}{117803804433918257037591108215961488912378364464610770534009260121359} a^{16} - \frac{27714407770926770552082149354574019704188335718872326455839679368284}{117803804433918257037591108215961488912378364464610770534009260121359} a^{15} - \frac{49802135081089303628684182823829135882527960826891655833504010903974}{117803804433918257037591108215961488912378364464610770534009260121359} a^{14} - \frac{1711079818602169540974670990826093088189108563636153631024699104295}{117803804433918257037591108215961488912378364464610770534009260121359} a^{13} - \frac{9020899632596491931556616305021369931187253280130941914047799315791}{117803804433918257037591108215961488912378364464610770534009260121359} a^{12} - \frac{14597541555563873359056196255217753832578398884714361600003596717474}{117803804433918257037591108215961488912378364464610770534009260121359} a^{11} + \frac{44956415845607269419635277330111415687451773057661776118560032148776}{117803804433918257037591108215961488912378364464610770534009260121359} a^{10} - \frac{35446524400056393880563396114727001897600079681418839039703997526552}{117803804433918257037591108215961488912378364464610770534009260121359} a^{9} - \frac{2438441784386050756909636583089781743611214978161320078123374096905}{6929635554936368061034771071527146406610492027330045325529956477727} a^{8} - \frac{31547288514319554129879654186803763659122773477643800856428561075105}{117803804433918257037591108215961488912378364464610770534009260121359} a^{7} - \frac{17991381076952175782956395325061433612481637387345491203467782314879}{117803804433918257037591108215961488912378364464610770534009260121359} a^{6} + \frac{396344206877973904120597295479067691643623663248854998102716951867}{6929635554936368061034771071527146406610492027330045325529956477727} a^{5} - \frac{51681311276615672961550277900093361564358133139792622315159215775487}{117803804433918257037591108215961488912378364464610770534009260121359} a^{4} + \frac{4676069689878254595829758958863387095313301118024733254410376539661}{117803804433918257037591108215961488912378364464610770534009260121359} a^{3} + \frac{11762855054858052837079467207144865408089500333345553194356557772312}{117803804433918257037591108215961488912378364464610770534009260121359} a^{2} - \frac{44003654258322894957649465253963231424803230774502023560265386672413}{117803804433918257037591108215961488912378364464610770534009260121359} a - \frac{2619091048433203569405489771172832423650526218449135855879753453590}{6929635554936368061034771071527146406610492027330045325529956477727}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 60984866807000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 244944 |
| The 72 conjugacy class representatives for t21n112 are not computed |
| Character table for t21n112 is not computed |
Intermediate fields
| 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.6 | $x^{14} - 3 x^{12} + 4 x^{11} - 2 x^{10} + 4 x^{9} - 2 x^{8} + 4 x^{6} - 2 x^{5} - 2 x^{4} + 2 x^{2} - 2 x + 3$ | $2$ | $7$ | $14$ | 14T9 | $[2, 2, 2, 2]^{7}$ | |
| 29 | Data not computed | ||||||
| 853 | Data not computed | ||||||
| 10967310769 | Data not computed | ||||||