Normalized defining polynomial
\( x^{21} - 9 x^{20} - 90 x^{19} + 787 x^{18} + 4296 x^{17} - 28263 x^{16} - 142947 x^{15} + 479493 x^{14} + 3197667 x^{13} - 1958951 x^{12} - 41262153 x^{11} - 58045893 x^{10} + 208861462 x^{9} + 795472488 x^{8} + 742687431 x^{7} - 1196191236 x^{6} - 5911909311 x^{5} - 16729068054 x^{4} - 35608345120 x^{3} - 48947636958 x^{2} - 37810129356 x - 12555717151 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2861036198786598591687866576432858225312578593937827=-\,3^{29}\cdot 7^{2}\cdot 97^{4}\cdot 547^{6}\cdot 598963^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $282.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 97, 547, 598963$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{9} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{10} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{11} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{18} + \frac{1}{3} a^{12} - \frac{1}{3} a^{6} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{19} + \frac{1}{3} a^{13} - \frac{1}{3} a^{7} + \frac{1}{3} a^{4}$, $\frac{1}{50859981603703590203827552838687818947976941820118807293120921200954119025849} a^{20} + \frac{5631586645606840672936240732699735969699926943565127721053913358719378374683}{50859981603703590203827552838687818947976941820118807293120921200954119025849} a^{19} + \frac{58225047697380362626248767039548405497617104950370271413328125533902192245}{50859981603703590203827552838687818947976941820118807293120921200954119025849} a^{18} + \frac{589527898735195979245777841549149897184639573788901070539649126923184378107}{50859981603703590203827552838687818947976941820118807293120921200954119025849} a^{17} - \frac{495808127245447202161046229073312694625001831709147238929554849439425510187}{16953327201234530067942517612895939649325647273372935764373640400318039675283} a^{16} + \frac{3827451309317884191162477810922764711075647139209451347579020108765752740632}{50859981603703590203827552838687818947976941820118807293120921200954119025849} a^{15} + \frac{8085770343962404657663721378703656264411354503740156585360385550511017425345}{50859981603703590203827552838687818947976941820118807293120921200954119025849} a^{14} + \frac{3387921982423660994568359127494067667180796470362485150903611118011742065754}{50859981603703590203827552838687818947976941820118807293120921200954119025849} a^{13} - \frac{8933143043703393951081713583760342954416056600563618657292716314770148352094}{50859981603703590203827552838687818947976941820118807293120921200954119025849} a^{12} + \frac{15947241050996309946933359608048942954523595150052104547881325673811267882110}{50859981603703590203827552838687818947976941820118807293120921200954119025849} a^{11} + \frac{4204215754937279099104947449864111775888328372518216768137282109737844534764}{16953327201234530067942517612895939649325647273372935764373640400318039675283} a^{10} + \frac{19150227485261987341089341027553449944399032162708325465832973824594696078731}{50859981603703590203827552838687818947976941820118807293120921200954119025849} a^{9} + \frac{24637685807181930208285798847595673972832858973732368891487128710626167520143}{50859981603703590203827552838687818947976941820118807293120921200954119025849} a^{8} - \frac{1872027858475228170592785002276180752730690501594907302999419483413213349451}{50859981603703590203827552838687818947976941820118807293120921200954119025849} a^{7} + \frac{25394539907389264520854039928013290314863949813775893561722583369144424903636}{50859981603703590203827552838687818947976941820118807293120921200954119025849} a^{6} - \frac{5863176683309233174378978321287118891771461244948295669849668432507648501705}{50859981603703590203827552838687818947976941820118807293120921200954119025849} a^{5} - \frac{13178042938787767394222543582532195467220304482956811916736296049765712125239}{50859981603703590203827552838687818947976941820118807293120921200954119025849} a^{4} + \frac{366687482106541843935622416094095943643812519456936710474838637867005116914}{16953327201234530067942517612895939649325647273372935764373640400318039675283} a^{3} - \frac{2645803601505413621886635879172249548645721013621153242122006126060086383433}{50859981603703590203827552838687818947976941820118807293120921200954119025849} a^{2} + \frac{1906433956914537845088579107333613995162171935496267370423669348083505448507}{16953327201234530067942517612895939649325647273372935764373640400318039675283} a - \frac{162322179920831723498880664671229055266540782364983608140026956220004562258}{50859981603703590203827552838687818947976941820118807293120921200954119025849}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 359676963781000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 11022480 |
| The 150 conjugacy class representatives for t21n140 are not computed |
| Character table for t21n140 is not computed |
Intermediate fields
| 7.7.1963110249.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }{,}\,{\href{/LocalNumberField/2.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $15{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.7.0.1}{7} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.3.2 | $x^{3} + 3 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ |
| 3.6.8.1 | $x^{6} + 6 x^{5} + 18 x^{2} + 9$ | $3$ | $2$ | $8$ | $C_3^2:C_4$ | $[2, 2]^{4}$ | |
| 3.12.18.64 | $x^{12} + 12 x^{10} - 12 x^{9} - 9 x^{8} - 9 x^{7} - 9 x^{6} - 9 x^{5} - 9 x^{4} + 9 x^{3} + 9$ | $6$ | $2$ | $18$ | 12T40 | $[2, 2]_{2}^{4}$ | |
| $7$ | 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $97$ | $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.3.2.2 | $x^{3} + 485$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 97.3.2.3 | $x^{3} - 2425$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 97.6.0.1 | $x^{6} - x + 10$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 547 | Data not computed | ||||||
| 598963 | Data not computed | ||||||