Normalized defining polynomial
\( x^{21} - x^{20} - 6 x^{19} + 9 x^{18} + 49 x^{17} - 53 x^{16} - 173 x^{15} + 212 x^{14} + 363 x^{13} - 424 x^{12} - 649 x^{11} + 526 x^{10} + 562 x^{9} - 475 x^{8} - 233 x^{7} + 217 x^{6} + 94 x^{5} - 67 x^{4} - 14 x^{3} + 14 x^{2} - 1 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-27791403259100732442943003841279=-\,23^{7}\cdot 71^{3}\cdot 283583^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 71, 283583$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{363046772885354205807121} a^{20} - \frac{102953393717042109305067}{363046772885354205807121} a^{19} - \frac{95983478296841818914140}{363046772885354205807121} a^{18} - \frac{87804389765010130850290}{363046772885354205807121} a^{17} - \frac{91335852395532790316}{363046772885354205807121} a^{16} - \frac{135397716848818753803617}{363046772885354205807121} a^{15} + \frac{124796724523784241772872}{363046772885354205807121} a^{14} - \frac{26810637283473338205262}{363046772885354205807121} a^{13} + \frac{41512777892756816105383}{363046772885354205807121} a^{12} + \frac{62178370696491541435866}{363046772885354205807121} a^{11} - \frac{159769985744400376540786}{363046772885354205807121} a^{10} - \frac{91888579351063200667571}{363046772885354205807121} a^{9} - \frac{171879302590408053523801}{363046772885354205807121} a^{8} - \frac{67486090834506513635252}{363046772885354205807121} a^{7} - \frac{46389651210999613935634}{363046772885354205807121} a^{6} - \frac{7343429124017647562524}{363046772885354205807121} a^{5} - \frac{22793153153302110618077}{363046772885354205807121} a^{4} - \frac{82922458277143483624803}{363046772885354205807121} a^{3} + \frac{5559223949470690037196}{363046772885354205807121} a^{2} + \frac{121467419843402404661426}{363046772885354205807121} a + \frac{159947363379411312442286}{363046772885354205807121}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 47881465.0911 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 30240 |
| The 45 conjugacy class representatives for t21n74 |
| Character table for t21n74 is not computed |
Intermediate fields
| 3.1.23.1, 7.7.20134393.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | $15{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $71$ | 71.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 71.6.3.1 | $x^{6} - 142 x^{4} + 5041 x^{2} - 1431644$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 71.6.0.1 | $x^{6} - 2 x + 13$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 71.6.0.1 | $x^{6} - 2 x + 13$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 283583 | Data not computed | ||||||