Normalized defining polynomial
\( x^{21} - 2 x^{20} - 54 x^{19} + 135 x^{18} + 1157 x^{17} - 3586 x^{16} - 11893 x^{15} + 48699 x^{14} + 49421 x^{13} - 358369 x^{12} + 92229 x^{11} + 1341255 x^{10} - 1573377 x^{9} - 1749879 x^{8} + 4607869 x^{7} - 1997427 x^{6} - 2688590 x^{5} + 3784011 x^{4} - 2037535 x^{3} + 590098 x^{2} - 105404 x + 11177 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-273490175308145649218316559765231007672934873279971520512=-\,2^{12}\cdot 23^{7}\cdot 79397^{2}\cdot 174007^{2}\cdot 320532929081^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $486.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 23, 79397, 174007, 320532929081$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} + \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{4} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} + \frac{1}{4} a^{3}$, $\frac{1}{8} a^{18} - \frac{1}{8} a^{17} - \frac{1}{8} a^{15} - \frac{1}{8} a^{14} - \frac{1}{8} a^{12} + \frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{4} a^{9} + \frac{1}{8} a^{8} + \frac{1}{8} a^{7} + \frac{1}{8} a^{6} - \frac{3}{8} a^{4} - \frac{1}{8} a^{3} + \frac{3}{8} a + \frac{3}{8}$, $\frac{1}{11913285904} a^{19} + \frac{6569663}{2978321476} a^{18} - \frac{1436873499}{11913285904} a^{17} + \frac{1207287853}{11913285904} a^{16} + \frac{316844369}{5956642952} a^{15} - \frac{368827839}{11913285904} a^{14} - \frac{5333305}{70492816} a^{13} + \frac{330051031}{2978321476} a^{12} - \frac{1387993391}{5956642952} a^{11} - \frac{1457995941}{11913285904} a^{10} - \frac{2296116899}{11913285904} a^{9} + \frac{676288857}{5956642952} a^{8} - \frac{1019641851}{5956642952} a^{7} + \frac{2815930567}{11913285904} a^{6} + \frac{3262021069}{11913285904} a^{5} + \frac{18723845}{229101652} a^{4} + \frac{5136535537}{11913285904} a^{3} - \frac{5301916431}{11913285904} a^{2} - \frac{2454973003}{5956642952} a + \frac{794530777}{11913285904}$, $\frac{1}{17740797628805637152} a^{20} + \frac{13139325}{17740797628805637152} a^{19} + \frac{172641887734221}{17740797628805637152} a^{18} + \frac{1005659878649331617}{8870398814402818576} a^{17} - \frac{481468034828472741}{17740797628805637152} a^{16} - \frac{1534399333311012941}{17740797628805637152} a^{15} + \frac{29773429652011675}{1108799851800352322} a^{14} - \frac{876855062389906309}{17740797628805637152} a^{13} + \frac{528672435002153981}{8870398814402818576} a^{12} - \frac{883560971927030843}{17740797628805637152} a^{11} + \frac{125803970078460214}{554399925900176161} a^{10} + \frac{2742161461529789671}{17740797628805637152} a^{9} + \frac{65748301891185948}{554399925900176161} a^{8} - \frac{3778931978807246351}{17740797628805637152} a^{7} - \frac{586590247053149583}{4435199407201409288} a^{6} + \frac{7889616199527021145}{17740797628805637152} a^{5} + \frac{7636007511166078801}{17740797628805637152} a^{4} - \frac{4003893238747098683}{8870398814402818576} a^{3} - \frac{6516226658240195865}{17740797628805637152} a^{2} + \frac{8391646671438528003}{17740797628805637152} a + \frac{6712869267645493505}{17740797628805637152}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 240604035785000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 96018048000 |
| The 255 conjugacy class representatives for t21n156 are not computed |
| Character table for t21n156 is not computed |
Intermediate fields
| 3.1.23.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | R | $15{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | $15{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $21$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.12.12.31 | $x^{12} + 4 x^{11} - 6 x^{10} + 8 x^{9} - 4 x^{8} + 8 x^{7} - 4 x^{6} + 4 x^{5} - 4 x^{4} + 8 x + 8$ | $4$ | $3$ | $12$ | 12T205 | $[4/3, 4/3, 4/3, 4/3, 4/3, 4/3]_{3}^{6}$ | |
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.7.0.1 | $x^{7} - x + 8$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 79397 | Data not computed | ||||||
| 174007 | Data not computed | ||||||
| 320532929081 | Data not computed | ||||||