Normalized defining polynomial
\( x^{21} + 42 x^{19} - 28 x^{18} + 630 x^{17} - 840 x^{16} + 4060 x^{15} - 7560 x^{14} + 9576 x^{13} - 13216 x^{12} - 15120 x^{11} + 85344 x^{10} - 160888 x^{9} + 243936 x^{8} - 303414 x^{7} + 265916 x^{6} - 161784 x^{5} + 77616 x^{4} - 33824 x^{3} + 12096 x^{2} - 2688 x + 256 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-26496011938148351603082366412208086506763670519808=-\,2^{32}\cdot 3^{22}\cdot 7^{15}\cdot 37\cdot 47^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $225.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 37, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{4} a^{13} - \frac{1}{2} a^{12} - \frac{1}{4} a^{11} - \frac{1}{2} a^{9} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{64} a^{16} - \frac{1}{32} a^{15} + \frac{3}{32} a^{14} + \frac{3}{8} a^{13} - \frac{13}{32} a^{12} + \frac{3}{16} a^{11} - \frac{3}{16} a^{10} + \frac{1}{4} a^{9} + \frac{1}{8} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{8} a^{4} + \frac{1}{4} a^{3} - \frac{11}{32} a^{2} - \frac{3}{8} a - \frac{3}{8}$, $\frac{1}{512} a^{17} + \frac{1}{256} a^{15} + \frac{9}{128} a^{14} - \frac{85}{256} a^{13} - \frac{13}{64} a^{12} - \frac{13}{128} a^{11} + \frac{31}{64} a^{10} - \frac{11}{64} a^{9} - \frac{7}{16} a^{8} + \frac{15}{32} a^{7} + \frac{7}{16} a^{6} - \frac{15}{64} a^{5} - \frac{1}{16} a^{4} + \frac{69}{256} a^{3} - \frac{17}{128} a^{2} - \frac{1}{64} a + \frac{5}{32}$, $\frac{1}{28672} a^{18} - \frac{1}{2048} a^{17} - \frac{95}{14336} a^{16} + \frac{17}{3584} a^{15} - \frac{913}{14336} a^{14} + \frac{569}{7168} a^{13} + \frac{191}{7168} a^{12} - \frac{83}{1792} a^{11} - \frac{733}{3584} a^{10} + \frac{95}{1792} a^{9} + \frac{723}{1792} a^{8} - \frac{177}{448} a^{7} + \frac{937}{3584} a^{6} + \frac{97}{256} a^{5} - \frac{3803}{14336} a^{4} - \frac{509}{1792} a^{3} - \frac{509}{1792} a^{2} - \frac{37}{448} a + \frac{429}{896}$, $\frac{1}{229376} a^{19} - \frac{1}{57344} a^{18} + \frac{59}{114688} a^{17} - \frac{63}{8192} a^{16} + \frac{215}{114688} a^{15} - \frac{1783}{14336} a^{14} - \frac{13159}{57344} a^{13} + \frac{2133}{28672} a^{12} + \frac{1863}{28672} a^{11} - \frac{271}{1024} a^{10} + \frac{655}{2048} a^{9} + \frac{2813}{7168} a^{8} + \frac{543}{4096} a^{7} + \frac{1565}{3584} a^{6} + \frac{52309}{114688} a^{5} + \frac{4037}{57344} a^{4} - \frac{1735}{14336} a^{3} + \frac{13}{7168} a^{2} - \frac{2215}{7168} a + \frac{913}{3584}$, $\frac{1}{1835008} a^{20} - \frac{1}{917504} a^{19} - \frac{9}{917504} a^{18} + \frac{33}{229376} a^{17} - \frac{3725}{917504} a^{16} - \frac{25605}{458752} a^{15} - \frac{69343}{458752} a^{14} - \frac{52393}{114688} a^{13} - \frac{56271}{229376} a^{12} + \frac{15861}{114688} a^{11} - \frac{34939}{114688} a^{10} + \frac{7827}{28672} a^{9} - \frac{44095}{229376} a^{8} + \frac{43341}{114688} a^{7} + \frac{16789}{917504} a^{6} - \frac{88307}{229376} a^{5} + \frac{7575}{229376} a^{4} + \frac{11843}{28672} a^{3} + \frac{1013}{8192} a^{2} + \frac{7093}{14336} a + \frac{6897}{14336}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 426410659046000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 11757312 |
| The 168 conjugacy class representatives for t21n142 are not computed |
| Character table for t21n142 is not computed |
Intermediate fields
| 7.7.111677002304.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{7}$ | R | $21$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.26.15 | $x^{14} - 2 x^{13} + 4 x^{11} + 2 x^{10} + 2 x^{8} - 2 x^{6} + 4 x^{5} + 4 x^{4} + 2 x^{2} + 2$ | $14$ | $1$ | $26$ | 14T44 | $[2, 18/7, 18/7, 18/7, 20/7, 20/7, 20/7]_{7}^{3}$ | |
| 3 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| 37 | Data not computed | ||||||
| $47$ | $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.6.3.1 | $x^{6} - 94 x^{4} + 2209 x^{2} - 415292$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 47.12.6.1 | $x^{12} + 1038230 x^{6} - 229345007 x^{2} + 269480383225$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |