Normalized defining polynomial
\( x^{21} - 584 x^{19} - 2330 x^{18} + 135114 x^{17} + 1001524 x^{16} - 14579165 x^{15} - 169654426 x^{14} + 573973047 x^{13} + 14152938583 x^{12} + 23315747107 x^{11} - 561865862184 x^{10} - 3053312377890 x^{9} + 5381524031001 x^{8} + 96478913382245 x^{7} + 268015246716056 x^{6} - 486289322755235 x^{5} - 5316057172009941 x^{4} - 16677714442871648 x^{3} - 28541651645161072 x^{2} - 27559645613628661 x - 12235548256736671 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-25213622439646812436083270023728685814425978264040574030371=-\,3^{7}\cdot 7^{2}\cdot 421^{2}\cdot 577^{9}\cdot 811^{2}\cdot 2857^{2}\cdot 186763^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $603.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 421, 577, 811, 2857, 186763$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{11} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{1}{3} a^{8} + \frac{4}{9} a^{6} - \frac{1}{9} a^{5} + \frac{4}{9} a^{4} + \frac{1}{9} a^{3} + \frac{1}{9} a + \frac{2}{9}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{10} + \frac{1}{9} a^{9} - \frac{1}{3} a^{8} + \frac{4}{9} a^{7} + \frac{1}{9} a^{6} + \frac{2}{9} a^{5} + \frac{1}{3} a^{4} - \frac{4}{9} a^{3} + \frac{4}{9} a^{2} + \frac{4}{9} a + \frac{4}{9}$, $\frac{1}{27} a^{13} - \frac{1}{27} a^{12} + \frac{1}{27} a^{11} + \frac{1}{9} a^{10} + \frac{2}{27} a^{9} + \frac{10}{27} a^{8} + \frac{13}{27} a^{6} - \frac{11}{27} a^{5} - \frac{13}{27} a^{4} - \frac{13}{27} a^{3} + \frac{1}{3} a - \frac{1}{27}$, $\frac{1}{27} a^{14} + \frac{1}{27} a^{11} + \frac{2}{27} a^{10} - \frac{1}{9} a^{9} - \frac{8}{27} a^{8} - \frac{5}{27} a^{7} + \frac{8}{27} a^{6} + \frac{2}{9} a^{5} + \frac{7}{27} a^{4} + \frac{11}{27} a^{3} - \frac{4}{27} a + \frac{11}{27}$, $\frac{1}{81} a^{15} + \frac{1}{81} a^{13} + \frac{1}{27} a^{12} - \frac{1}{27} a^{11} + \frac{2}{27} a^{10} - \frac{2}{27} a^{9} - \frac{4}{81} a^{8} + \frac{2}{81} a^{7} + \frac{34}{81} a^{6} - \frac{1}{81} a^{5} - \frac{35}{81} a^{4} - \frac{13}{81} a^{3} + \frac{35}{81} a^{2} - \frac{28}{81} a + \frac{8}{81}$, $\frac{1}{81} a^{16} + \frac{1}{81} a^{14} + \frac{1}{27} a^{11} + \frac{4}{27} a^{10} - \frac{10}{81} a^{9} - \frac{1}{81} a^{8} + \frac{7}{81} a^{7} - \frac{40}{81} a^{6} - \frac{29}{81} a^{5} + \frac{26}{81} a^{4} - \frac{34}{81} a^{3} + \frac{26}{81} a^{2} + \frac{35}{81} a + \frac{1}{27}$, $\frac{1}{243} a^{17} + \frac{1}{243} a^{16} - \frac{1}{243} a^{15} + \frac{4}{243} a^{14} - \frac{2}{243} a^{13} - \frac{1}{81} a^{12} + \frac{2}{81} a^{11} - \frac{22}{243} a^{10} + \frac{10}{243} a^{9} - \frac{37}{243} a^{8} - \frac{52}{243} a^{7} - \frac{23}{243} a^{6} - \frac{46}{243} a^{5} + \frac{92}{243} a^{4} + \frac{11}{81} a^{3} - \frac{10}{27} a^{2} + \frac{64}{243} a + \frac{65}{243}$, $\frac{1}{243} a^{18} + \frac{1}{243} a^{16} - \frac{1}{243} a^{15} - \frac{1}{81} a^{14} + \frac{2}{243} a^{13} + \frac{1}{27} a^{12} + \frac{8}{243} a^{11} + \frac{5}{243} a^{10} + \frac{4}{243} a^{9} - \frac{22}{81} a^{8} - \frac{16}{243} a^{7} + \frac{40}{243} a^{6} + \frac{31}{81} a^{5} - \frac{50}{243} a^{4} - \frac{16}{81} a^{3} - \frac{32}{243} a^{2} + \frac{58}{243} a - \frac{5}{243}$, $\frac{1}{3645} a^{19} - \frac{1}{3645} a^{18} - \frac{1}{729} a^{17} + \frac{22}{3645} a^{16} - \frac{8}{3645} a^{15} + \frac{38}{3645} a^{14} + \frac{43}{3645} a^{13} - \frac{11}{729} a^{12} - \frac{58}{1215} a^{11} + \frac{257}{3645} a^{10} - \frac{367}{3645} a^{9} + \frac{434}{3645} a^{8} + \frac{19}{729} a^{7} + \frac{968}{3645} a^{6} + \frac{1552}{3645} a^{5} + \frac{128}{3645} a^{4} + \frac{1618}{3645} a^{3} - \frac{14}{81} a^{2} - \frac{263}{1215} a + \frac{1247}{3645}$, $\frac{1}{597021724360363754341221550557011769907327562902833827167772787616582285457987226155716238615884576513996173623985} a^{20} + \frac{57066880133733822943140814432880386644909983266251583430897076076008788313341607306304663823634633910074158336}{597021724360363754341221550557011769907327562902833827167772787616582285457987226155716238615884576513996173623985} a^{19} + \frac{668288164524166250075418187314026704621429849575862203013293849957641543553831955981904153974363026205258229233}{597021724360363754341221550557011769907327562902833827167772787616582285457987226155716238615884576513996173623985} a^{18} + \frac{173104885776656977803310537710612865225720668321733701874834972542811083513616970876006593617911102438047979857}{597021724360363754341221550557011769907327562902833827167772787616582285457987226155716238615884576513996173623985} a^{17} - \frac{1285277589302156499471292852450652995635875683853804877744744098630740026836556774516552906345859601378597033759}{597021724360363754341221550557011769907327562902833827167772787616582285457987226155716238615884576513996173623985} a^{16} + \frac{1100980651495545507538923051621773987241185121026149019060169310801578152338209642302155141826721764493579582062}{597021724360363754341221550557011769907327562902833827167772787616582285457987226155716238615884576513996173623985} a^{15} + \frac{8450783316802408381222614881325627103915266724509637463362819683233903712558292438250161405363799564457220521784}{597021724360363754341221550557011769907327562902833827167772787616582285457987226155716238615884576513996173623985} a^{14} + \frac{3852569803488794183562139887584535295668235703546569170363111229114443566712397075909658389842912455551686923771}{597021724360363754341221550557011769907327562902833827167772787616582285457987226155716238615884576513996173623985} a^{13} + \frac{688566754579683584189939526485387389521263624917798260188731839987232358404539523634147572864321153604508786061}{28429605921922083540058169074143417614634645852515896531798704172218204069427963150272201838851646500666484458285} a^{12} + \frac{2808155321141902446921433893067023167318240110291190706687651002972976191086633986316881471979645161240798142202}{85288817765766250620174507222430252843903937557547689595396112516654612208283889450816605516554939501999453374855} a^{11} - \frac{95320523224324023079315699401558483119941569470635829286968417445267038033468924761966112248657680089675553631468}{597021724360363754341221550557011769907327562902833827167772787616582285457987226155716238615884576513996173623985} a^{10} + \frac{5556866105892008317549031107889729947597610138435929742884340357844603303574532562271719964281997265360185901869}{119404344872072750868244310111402353981465512580566765433554557523316457091597445231143247723176915302799234724797} a^{9} - \frac{157938158771685577062697176855467211831021569758217016880273606910269841971986921256900404183832764924248284519327}{597021724360363754341221550557011769907327562902833827167772787616582285457987226155716238615884576513996173623985} a^{8} + \frac{57173124483839128987182299136297212375868331671920395140668900489128659366210926746025735466406901338572280911593}{597021724360363754341221550557011769907327562902833827167772787616582285457987226155716238615884576513996173623985} a^{7} + \frac{197169723037025270943577465598846328164563242001807811252644287498180814318950670346020073664144345332402186001538}{597021724360363754341221550557011769907327562902833827167772787616582285457987226155716238615884576513996173623985} a^{6} + \frac{81696473787117739210474018190091504466291846039996425645047502752492271411725668299398630430500505674739837935957}{597021724360363754341221550557011769907327562902833827167772787616582285457987226155716238615884576513996173623985} a^{5} + \frac{281210696427570563690930158039786723350739383696325393883380865067627556810482655519900893784027698098757441415864}{597021724360363754341221550557011769907327562902833827167772787616582285457987226155716238615884576513996173623985} a^{4} + \frac{65223945161038887674303065831187069429009653789053661907134763865454642058653494548233543750469007007916963364427}{199007241453454584780407183519003923302442520967611275722590929205527428485995742051905412871961525504665391207995} a^{3} + \frac{69148104367642645327029406415159900025886859262264066401401770532471984713940882835369169318780671407328022645572}{199007241453454584780407183519003923302442520967611275722590929205527428485995742051905412871961525504665391207995} a^{2} - \frac{263933272300507697360204872699981501198159586355675601721795581128715584326534608362015821691871935414966398715286}{597021724360363754341221550557011769907327562902833827167772787616582285457987226155716238615884576513996173623985} a - \frac{10776132955514232393955491972616693836148278156442188959055335712742311507256432078501751926485579451583314393339}{66335747151151528260135727839667974434147506989203758574196976401842476161998580683968470957320508501555130402665}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 690886434129000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 61236 |
| The 171 conjugacy class representatives for t21n93 are not computed |
| Character table for t21n93 is not computed |
Intermediate fields
| 7.7.192100033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }{,}\,{\href{/LocalNumberField/2.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.7.0.1}{7} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.7.0.1 | $x^{7} + x^{2} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 3.14.7.2 | $x^{14} + 243 x^{4} - 729 x^{2} + 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 421 | Data not computed | ||||||
| 577 | Data not computed | ||||||
| 811 | Data not computed | ||||||
| 2857 | Data not computed | ||||||
| 186763 | Data not computed | ||||||