Normalized defining polynomial
\( x^{21} - 6 x^{20} + 36 x^{19} - 114 x^{18} + 327 x^{17} - 693 x^{16} + 1251 x^{15} - 2007 x^{14} + 2295 x^{13} - 2524 x^{12} + 1179 x^{11} + 198 x^{10} - 1188 x^{9} + 3231 x^{8} - 2097 x^{7} + 618 x^{6} + 438 x^{5} - 1026 x^{4} + 44 x^{3} - 6 x^{2} + 45 x + 9 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2439749867262143600576492887163977728=-\,2^{14}\cdot 3^{33}\cdot 547^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 547$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{1885917068397892087904161103750799} a^{20} - \frac{51388982510631853927890545410175}{628639022799297362634720367916933} a^{19} + \frac{13482531570015415034998338280643}{628639022799297362634720367916933} a^{18} + \frac{164066274180591524043073748732996}{628639022799297362634720367916933} a^{17} - \frac{140640274326876897340886783805636}{628639022799297362634720367916933} a^{16} - \frac{766076541941893301042241879163}{21677207682734391814990357514377} a^{15} - \frac{59076294815011506145597868332643}{628639022799297362634720367916933} a^{14} - \frac{156304837046118118447236085886596}{628639022799297362634720367916933} a^{13} - \frac{4343701252472107503961082592758}{628639022799297362634720367916933} a^{12} - \frac{317939340770301559635950051672596}{1885917068397892087904161103750799} a^{11} + \frac{296812471015467787277807110894094}{628639022799297362634720367916933} a^{10} + \frac{782962438010235560798798026916}{628639022799297362634720367916933} a^{9} + \frac{267718250129574634422485081885331}{628639022799297362634720367916933} a^{8} + \frac{234146306630708062511737267729397}{628639022799297362634720367916933} a^{7} + \frac{5276933597587206727386583873782}{628639022799297362634720367916933} a^{6} + \frac{202379783788771566536157682173402}{628639022799297362634720367916933} a^{5} - \frac{133017905465912346502547183726763}{628639022799297362634720367916933} a^{4} - \frac{241405406977970095798219078376578}{628639022799297362634720367916933} a^{3} + \frac{31887104603538375331688932566740}{1885917068397892087904161103750799} a^{2} + \frac{178940023595240967142782065844027}{628639022799297362634720367916933} a + \frac{90552157293155830216957800016873}{628639022799297362634720367916933}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20747070689.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 15120 |
| The 27 conjugacy class representatives for t21n57 |
| Character table for t21n57 is not computed |
Intermediate fields
| 3.1.108.1, 7.7.1963110249.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | $15{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.7.0.1}{7} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 547 | Data not computed | ||||||