Normalized defining polynomial
\( x^{21} - 2 x^{20} - 7 x^{19} + 30 x^{18} + 67 x^{17} - 166 x^{16} - 306 x^{15} + 883 x^{14} + 1278 x^{13} - 2134 x^{12} - 3557 x^{11} + 2894 x^{10} + 3853 x^{9} - 3155 x^{8} - 310 x^{7} + 967 x^{6} + 11 x^{5} - 146 x^{4} + 8 x^{3} + 21 x^{2} - 1 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-24136659873181133143007749754988839=-\,23^{7}\cdot 577^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 577$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{5} a^{15} - \frac{1}{5} a^{14} - \frac{1}{5} a^{13} - \frac{1}{5} a^{12} - \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{16} - \frac{2}{5} a^{14} - \frac{2}{5} a^{13} - \frac{1}{5} a^{12} - \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{17} + \frac{1}{5} a^{14} + \frac{2}{5} a^{13} + \frac{2}{5} a^{12} - \frac{2}{5} a^{11} - \frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{3} + \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{18} - \frac{2}{5} a^{14} - \frac{2}{5} a^{13} - \frac{1}{5} a^{12} - \frac{1}{5} a^{11} + \frac{2}{5} a^{10} - \frac{1}{5} a^{9} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{19} + \frac{1}{5} a^{14} + \frac{2}{5} a^{13} + \frac{2}{5} a^{12} + \frac{2}{5} a^{11} + \frac{2}{5} a^{10} - \frac{2}{5} a^{9} + \frac{1}{5} a^{8} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{281603514833761420416820225} a^{20} - \frac{1668847576547003873174879}{56320702966752284083364045} a^{19} - \frac{14857900906774869726974512}{281603514833761420416820225} a^{18} + \frac{3917254333317361977470971}{281603514833761420416820225} a^{17} - \frac{182219487133645942044476}{281603514833761420416820225} a^{16} - \frac{19116057542599175194873268}{281603514833761420416820225} a^{15} + \frac{31972420138587674379701503}{281603514833761420416820225} a^{14} + \frac{7144213400465018991433654}{281603514833761420416820225} a^{13} + \frac{106471185536252889074596201}{281603514833761420416820225} a^{12} - \frac{65408469431171240892752652}{281603514833761420416820225} a^{11} + \frac{17341137295947223848653849}{281603514833761420416820225} a^{10} + \frac{123851879544324943751207977}{281603514833761420416820225} a^{9} + \frac{53618811940851037412866227}{281603514833761420416820225} a^{8} + \frac{107605044464510061470920734}{281603514833761420416820225} a^{7} - \frac{118255390160771186187370047}{281603514833761420416820225} a^{6} + \frac{74094334123859040408889888}{281603514833761420416820225} a^{5} - \frac{123896382612972283944791778}{281603514833761420416820225} a^{4} + \frac{99054581144029644277794748}{281603514833761420416820225} a^{3} - \frac{84383408499905824587496026}{281603514833761420416820225} a^{2} - \frac{97339186329492730213268451}{281603514833761420416820225} a + \frac{25930321623006607911271638}{281603514833761420416820225}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2208285999.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times D_7$ (as 21T8):
| A solvable group of order 84 |
| The 15 conjugacy class representatives for $S_3\times D_7$ |
| Character table for $S_3\times D_7$ |
Intermediate fields
| 3.1.23.1, 7.7.192100033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.7.0.1 | $x^{7} - x + 8$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 23.14.7.2 | $x^{14} - 148035889 x^{2} + 27238603576$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| 577 | Data not computed | ||||||