Normalized defining polynomial
\( x^{21} + 3 x^{19} - 4 x^{18} - 36 x^{17} - 84 x^{16} - 460 x^{15} - 504 x^{14} - 861 x^{13} - 1196 x^{12} - 108 x^{11} - 2400 x^{10} + 6543 x^{9} + 6354 x^{8} - 6891 x^{7} - 1444 x^{6} - 1908 x^{5} - 1128 x^{4} + 2128 x^{3} - 288 x^{2} + 576 x - 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-20906801248251181022960306970083328=-\,2^{14}\cdot 3^{21}\cdot 17^{6}\cdot 131^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 131$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{14} - \frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} + \frac{3}{8} a^{9} - \frac{1}{2} a^{8} - \frac{1}{8} a^{5} + \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{18} - \frac{1}{16} a^{16} - \frac{1}{4} a^{15} - \frac{1}{4} a^{13} + \frac{1}{4} a^{12} - \frac{1}{2} a^{11} + \frac{3}{16} a^{10} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{16} a^{6} + \frac{1}{8} a^{5} - \frac{7}{16} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{19} - \frac{1}{32} a^{17} - \frac{1}{8} a^{16} - \frac{1}{8} a^{14} - \frac{3}{8} a^{13} - \frac{1}{4} a^{12} - \frac{13}{32} a^{11} - \frac{3}{8} a^{10} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{15}{32} a^{7} - \frac{7}{16} a^{6} - \frac{7}{32} a^{5} - \frac{3}{8} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{743734328436343120938409701602072526016} a^{20} + \frac{2437069203985050465753293669181429611}{185933582109085780234602425400518131504} a^{19} - \frac{10849048746665424933711111816681423533}{743734328436343120938409701602072526016} a^{18} - \frac{330639692168214437263996399276124701}{23241697763635722529325303175064766438} a^{17} + \frac{15835528953078014383979714927152157215}{185933582109085780234602425400518131504} a^{16} - \frac{42531973598542016393362197005793407529}{185933582109085780234602425400518131504} a^{15} + \frac{29274174326513419127856220675939790121}{185933582109085780234602425400518131504} a^{14} + \frac{11377408022231303911315400722173731255}{92966791054542890117301212700259065752} a^{13} + \frac{261653618332202750552920321212477968003}{743734328436343120938409701602072526016} a^{12} + \frac{25414823948948922105908735277784354059}{92966791054542890117301212700259065752} a^{11} - \frac{30616663310431622184579892185710186403}{185933582109085780234602425400518131504} a^{10} + \frac{16998084718139535338477549011182100875}{46483395527271445058650606350129532876} a^{9} - \frac{241599794366907143956997520751611560145}{743734328436343120938409701602072526016} a^{8} - \frac{124839295726760875235036935003724166061}{371867164218171560469204850801036263008} a^{7} - \frac{367829368724599976921055007924127148003}{743734328436343120938409701602072526016} a^{6} + \frac{24117321375690338280424920059781524935}{92966791054542890117301212700259065752} a^{5} - \frac{42270658477412601619115014183437485645}{185933582109085780234602425400518131504} a^{4} - \frac{10927829675132040204544906984014257519}{92966791054542890117301212700259065752} a^{3} + \frac{2665170459504591525788168063302312709}{46483395527271445058650606350129532876} a^{2} - \frac{8869241248624893458629311783691597347}{23241697763635722529325303175064766438} a + \frac{1798611987324792056676505861843740852}{11620848881817861264662651587532383219}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1457394853.22 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 705438720 |
| The 246 conjugacy class representatives for t21n151 are not computed |
| Character table for t21n151 is not computed |
Intermediate fields
| 7.3.4959529.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $21$ | R | $15{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{5}$ | $15{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | $15{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.29 | $x^{14} + 2 x^{13} - x^{12} + 2 x^{7} + 2 x^{5} + 2 x^{3} + 2 x - 1$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2]^{14}$ | |
| 3 | Data not computed | ||||||
| $17$ | 17.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 17.6.0.1 | $x^{6} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 17.12.6.1 | $x^{12} + 117912 x^{6} - 1419857 x^{2} + 3475809936$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 131 | Data not computed | ||||||