Normalized defining polynomial
\( x^{21} + 18 x^{19} - 20 x^{18} + 115 x^{17} - 188 x^{16} + 227 x^{15} - 571 x^{14} - 633 x^{13} + 412 x^{12} - 2156 x^{11} + 1703 x^{10} + 2628 x^{9} + 1031 x^{8} + 1528 x^{7} - 391 x^{6} + 241 x^{5} - 147 x^{4} + 21 x^{3} - 10 x^{2} - x + 1 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-195035727779935942827580963181007007=-\,31^{7}\cdot 577^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 577$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{13} a^{17} - \frac{4}{13} a^{16} - \frac{4}{13} a^{15} - \frac{1}{13} a^{14} - \frac{1}{13} a^{13} - \frac{4}{13} a^{12} + \frac{2}{13} a^{11} + \frac{5}{13} a^{10} - \frac{6}{13} a^{9} + \frac{1}{13} a^{8} - \frac{6}{13} a^{7} - \frac{2}{13} a^{6} + \frac{6}{13} a^{5} + \frac{4}{13} a^{4} + \frac{4}{13} a^{3} - \frac{3}{13} a^{2} + \frac{4}{13} a + \frac{4}{13}$, $\frac{1}{13} a^{18} + \frac{6}{13} a^{16} - \frac{4}{13} a^{15} - \frac{5}{13} a^{14} + \frac{5}{13} a^{13} - \frac{1}{13} a^{12} + \frac{1}{13} a^{10} + \frac{3}{13} a^{9} - \frac{2}{13} a^{8} - \frac{2}{13} a^{6} + \frac{2}{13} a^{5} - \frac{6}{13} a^{4} + \frac{5}{13} a^{2} - \frac{6}{13} a + \frac{3}{13}$, $\frac{1}{13} a^{19} - \frac{6}{13} a^{16} + \frac{6}{13} a^{15} - \frac{2}{13} a^{14} + \frac{5}{13} a^{13} - \frac{2}{13} a^{12} + \frac{2}{13} a^{11} - \frac{1}{13} a^{10} - \frac{5}{13} a^{9} - \frac{6}{13} a^{8} - \frac{5}{13} a^{7} + \frac{1}{13} a^{6} - \frac{3}{13} a^{5} + \frac{2}{13} a^{4} - \frac{6}{13} a^{3} - \frac{1}{13} a^{2} + \frac{5}{13} a + \frac{2}{13}$, $\frac{1}{6993505344346859626359218017} a^{20} + \frac{137182520446580065795053692}{6993505344346859626359218017} a^{19} + \frac{143873680524778428132996021}{6993505344346859626359218017} a^{18} - \frac{65976415096104736088732843}{6993505344346859626359218017} a^{17} - \frac{623465287009131472821772131}{6993505344346859626359218017} a^{16} + \frac{2587936956970762276108774881}{6993505344346859626359218017} a^{15} + \frac{2907986684173610148152618681}{6993505344346859626359218017} a^{14} - \frac{1958816652299964298131806777}{6993505344346859626359218017} a^{13} + \frac{2370824542825948851153009871}{6993505344346859626359218017} a^{12} + \frac{604340084697773649066092197}{6993505344346859626359218017} a^{11} - \frac{2043325286638205418619586375}{6993505344346859626359218017} a^{10} - \frac{2391132424548179288157173997}{6993505344346859626359218017} a^{9} - \frac{694764223781227223845336607}{6993505344346859626359218017} a^{8} + \frac{1165111532251832673273379568}{6993505344346859626359218017} a^{7} + \frac{1571160197151309470418165485}{6993505344346859626359218017} a^{6} - \frac{209798520466933933144149834}{6993505344346859626359218017} a^{5} - \frac{1975833228176912706680466862}{6993505344346859626359218017} a^{4} - \frac{3000478901743828000782787563}{6993505344346859626359218017} a^{3} - \frac{1154255681635998731997238227}{6993505344346859626359218017} a^{2} + \frac{2873484715934329560938565309}{6993505344346859626359218017} a + \frac{752738833243247432492140884}{6993505344346859626359218017}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3294250109.26 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\times D_7$ (as 21T8):
| A solvable group of order 84 |
| The 15 conjugacy class representatives for $S_3\times D_7$ |
| Character table for $S_3\times D_7$ |
Intermediate fields
| 3.1.31.1, 7.7.192100033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.7.0.1}{7} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $31$ | 31.7.0.1 | $x^{7} - x + 18$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 31.14.7.2 | $x^{14} - 887503681 x^{2} + 495227053998$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| 577 | Data not computed | ||||||