Normalized defining polynomial
\( x^{21} - 985345269 x^{18} + 390201702244539146 x^{15} - 82344046413632782590316922 x^{12} + 10123880900858011705357861577882618 x^{9} - 730517554800618820192741239594008021785368 x^{6} + 28783133010994748402746840721476260664822283722824 x^{3} - 479285774976425895157444496145072595909425826941886537129 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1878784678390609885463278613336761712345663997297459976819101301866168285944837147062927218547397519053883556305417013657324906923305650099=-\,3^{9}\cdot 43^{3}\cdot 127^{12}\cdot 173539^{3}\cdot 22027339^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $3{,}841{,}230.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 43, 127, 173539, 22027339$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2797472053} a^{6} - \frac{985345269}{2797472053} a^{3}$, $\frac{1}{2797472053} a^{7} - \frac{985345269}{2797472053} a^{4}$, $\frac{1}{2797472053} a^{8} - \frac{985345269}{2797472053} a^{5}$, $\frac{1}{7825849887316034809} a^{9} - \frac{985345269}{7825849887316034809} a^{6} + \frac{139483682}{2797472053} a^{3}$, $\frac{1}{23477549661948104427} a^{10} + \frac{1}{23477549661948104427} a^{9} - \frac{3782817322}{23477549661948104427} a^{7} - \frac{3782817322}{23477549661948104427} a^{6} + \frac{1}{3} a^{5} - \frac{1672643102}{8392416159} a^{4} + \frac{1307433668}{2797472053} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{23477549661948104427} a^{11} - \frac{1}{23477549661948104427} a^{9} - \frac{3782817322}{23477549661948104427} a^{8} - \frac{1812126784}{23477549661948104427} a^{6} + \frac{1307433668}{2797472053} a^{5} - \frac{1}{3} a^{4} + \frac{3643333640}{8392416159} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{65677789052219419670858078631} a^{12} - \frac{328448423}{21892596350739806556952692877} a^{9} + \frac{1}{8392416159} a^{7} + \frac{139483682}{23477549661948104427} a^{6} - \frac{328448423}{2797472053} a^{4} - \frac{935998037}{2797472053} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{65677789052219419670858078631} a^{13} - \frac{328448423}{21892596350739806556952692877} a^{10} + \frac{1}{8392416159} a^{8} + \frac{139483682}{23477549661948104427} a^{7} - \frac{328448423}{2797472053} a^{5} - \frac{935998037}{2797472053} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{65677789052219419670858078631} a^{14} - \frac{328448423}{21892596350739806556952692877} a^{11} + \frac{1}{23477549661948104427} a^{9} + \frac{139483682}{23477549661948104427} a^{8} - \frac{328448423}{7825849887316034809} a^{6} - \frac{935998037}{2797472053} a^{5} + \frac{1}{3} a^{4} - \frac{2657988371}{8392416159} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{1653586014387718657377935401495490994987} a^{15} - \frac{12175233481}{1653586014387718657377935401495490994987} a^{12} + \frac{26460641182}{591100101469974777037722707679} a^{9} - \frac{1}{8392416159} a^{7} + \frac{16726029539}{211297946957532939843} a^{6} + \frac{328448423}{2797472053} a^{4} - \frac{10507159352}{75531745431} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{10}{27}$, $\frac{1}{1653586014387718657377935401495490994987} a^{16} - \frac{12175233481}{1653586014387718657377935401495490994987} a^{13} + \frac{1283392705}{591100101469974777037722707679} a^{10} - \frac{1}{23477549661948104427} a^{9} - \frac{1}{8392416159} a^{8} - \frac{24760359994}{211297946957532939843} a^{7} + \frac{3782817322}{23477549661948104427} a^{6} - \frac{1812126784}{8392416159} a^{5} + \frac{31150950829}{75531745431} a^{4} + \frac{1672643102}{8392416159} a^{3} - \frac{8}{27} a - \frac{1}{3}$, $\frac{1}{4960758043163155972133806204486472984961} a^{17} + \frac{1}{4960758043163155972133806204486472984961} a^{16} - \frac{1}{4960758043163155972133806204486472984961} a^{15} + \frac{13002014996}{4960758043163155972133806204486472984961} a^{14} + \frac{13002014996}{4960758043163155972133806204486472984961} a^{13} - \frac{13002014996}{4960758043163155972133806204486472984961} a^{12} + \frac{17592533761}{1773300304409924331113168123037} a^{11} + \frac{17592533761}{1773300304409924331113168123037} a^{10} + \frac{57939211670}{1773300304409924331113168123037} a^{9} - \frac{57550362754}{633893840872598819529} a^{8} - \frac{57550362754}{633893840872598819529} a^{7} + \frac{30946040491}{633893840872598819529} a^{6} - \frac{84706529519}{226595236293} a^{5} + \frac{66356961343}{226595236293} a^{4} - \frac{62590901929}{226595236293} a^{3} + \frac{19}{81} a^{2} - \frac{8}{81} a + \frac{35}{81}$, $\frac{1}{35885664566617511106862801677465741607882175330073781509} a^{18} - \frac{1}{4960758043163155972133806204486472984961} a^{16} - \frac{297657663356798}{3987296062957501234095866853051749067542463925563753501} a^{15} - \frac{13002014996}{4960758043163155972133806204486472984961} a^{13} - \frac{157162866477614}{4275963427782813207709853950471349785680018651} a^{12} - \frac{17592533761}{1773300304409924331113168123037} a^{10} + \frac{7797023995914160}{169834421409829787402540792363779863} a^{9} + \frac{57550362754}{633893840872598819529} a^{7} - \frac{172533372481550}{4302280755849736816934157} a^{6} - \frac{1}{3} a^{5} + \frac{84706529519}{226595236293} a^{4} - \frac{281783357621563015}{585946503458688789} a^{3} + \frac{1}{3} a^{2} - \frac{19}{81} a + \frac{26988904}{209455713}$, $\frac{1}{35885664566617511106862801677465741607882175330073781509} a^{19} + \frac{4554988479896087}{35885664566617511106862801677465741607882175330073781509} a^{16} - \frac{1}{4960758043163155972133806204486472984961} a^{15} + \frac{33150070924318666}{12827890283348439623129561851414049357040055953} a^{13} - \frac{13002014996}{4960758043163155972133806204486472984961} a^{12} + \frac{60696204790944410}{4585529378065404259868601393822056301} a^{10} - \frac{17592533761}{1773300304409924331113168123037} a^{9} + \frac{49557755674842070}{1639168967978749727251913817} a^{7} + \frac{57550362754}{633893840872598819529} a^{6} - \frac{1}{3} a^{5} + \frac{6588868251991666}{585946503458688789} a^{4} - \frac{66356961343}{226595236293} a^{3} + \frac{1}{3} a^{2} + \frac{25373497}{69818571} a + \frac{8}{81}$, $\frac{1}{35885664566617511106862801677465741607882175330073781509} a^{20} - \frac{297657663356798}{3987296062957501234095866853051749067542463925563753501} a^{17} + \frac{1}{4960758043163155972133806204486472984961} a^{16} + \frac{1}{4960758043163155972133806204486472984961} a^{15} - \frac{157162866477614}{4275963427782813207709853950471349785680018651} a^{14} + \frac{13002014996}{4960758043163155972133806204486472984961} a^{13} + \frac{13002014996}{4960758043163155972133806204486472984961} a^{12} + \frac{563116545806891}{169834421409829787402540792363779863} a^{11} + \frac{17592533761}{1773300304409924331113168123037} a^{10} - \frac{57939211670}{1773300304409924331113168123037} a^{9} + \frac{66125228286872104}{546389655992916575750637939} a^{8} - \frac{57550362754}{633893840872598819529} a^{7} - \frac{106477785922}{633893840872598819529} a^{6} + \frac{225629195858876753}{585946503458688789} a^{5} + \frac{66356961343}{226595236293} a^{4} - \frac{61868266670}{226595236293} a^{3} + \frac{26988904}{209455713} a^{2} - \frac{8}{81} a - \frac{35}{81}$
Class group and class number
Not computed
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7348320 |
| The 118 conjugacy class representatives for t21n138 are not computed |
| Character table for t21n138 is not computed |
Intermediate fields
| 7.7.67159593.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }{,}\,{\href{/LocalNumberField/2.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | $18{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{3}$ | $15{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 43 | Data not computed | ||||||
| $127$ | 127.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 127.6.4.3 | $x^{6} + 635 x^{3} + 145161$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 127.12.8.3 | $x^{12} + 96774 x^{6} - 2048383 x^{3} + 2341301769$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| 173539 | Data not computed | ||||||
| 22027339 | Data not computed | ||||||