Normalized defining polynomial
\( x^{21} - 2 x^{20} - 290 x^{19} + 1037 x^{18} + 35044 x^{17} - 183697 x^{16} - 2162845 x^{15} + 16117777 x^{14} + 61971057 x^{13} - 771171843 x^{12} + 44494159 x^{11} + 19322952268 x^{10} - 51470344333 x^{9} - 181680152911 x^{8} + 1164333096777 x^{7} - 1283860391285 x^{6} - 5798553272533 x^{5} + 23775359952317 x^{4} - 40044407624163 x^{3} + 36366080012337 x^{2} - 17456241096928 x + 3558452875859 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-17451141185917252426351039201905818815724793838846299=-\,3^{7}\cdot 13^{7}\cdot 31^{2}\cdot 109^{7}\cdot 850807588597^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $307.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 13, 31, 109, 850807588597$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{11} a^{19} + \frac{4}{11} a^{18} - \frac{2}{11} a^{15} + \frac{2}{11} a^{14} + \frac{5}{11} a^{13} - \frac{5}{11} a^{12} - \frac{4}{11} a^{11} - \frac{3}{11} a^{10} + \frac{2}{11} a^{9} - \frac{1}{11} a^{8} - \frac{3}{11} a^{7} - \frac{2}{11} a^{6} - \frac{3}{11} a^{5} + \frac{1}{11} a^{4} + \frac{1}{11} a^{3} + \frac{3}{11} a^{2} + \frac{1}{11} a - \frac{1}{11}$, $\frac{1}{5051989438081250538401700422894761083029551774201366091235332214277415853258612377605638945207371359548193} a^{20} + \frac{142789620001849205708224354004692804033214055374075744918906221300771109965655434789236389501729446524852}{5051989438081250538401700422894761083029551774201366091235332214277415853258612377605638945207371359548193} a^{19} + \frac{372294300934684133199607560053176575863972743916825321245889515152232855774133753327993159975664612025002}{5051989438081250538401700422894761083029551774201366091235332214277415853258612377605638945207371359548193} a^{18} + \frac{36542834675953650640504446261017521926315293612049723022973367090708393931680165053158662480757257830083}{459271767098295503491063674808614643911777434018306008294121110388855986659873852509603540473397396322563} a^{17} + \frac{2210714978690699149113378642099040495225362229635869521103628644393017776482212527890394744307650234905284}{5051989438081250538401700422894761083029551774201366091235332214277415853258612377605638945207371359548193} a^{16} + \frac{1704864708759526963650550768440643458658747975070713479733698158877486460444736423569136855791085624232789}{5051989438081250538401700422894761083029551774201366091235332214277415853258612377605638945207371359548193} a^{15} + \frac{572416763336764332360592323426956213618139830577501369409459656855585245768112473102251850208587027593767}{5051989438081250538401700422894761083029551774201366091235332214277415853258612377605638945207371359548193} a^{14} + \frac{2252566993052196154897541325287463841454301635039929545273548640382991354548866131319470896264975642264745}{5051989438081250538401700422894761083029551774201366091235332214277415853258612377605638945207371359548193} a^{13} + \frac{49805331465775747482727603919745399819398698117769087843200373336258784316042535335445420436009945091736}{459271767098295503491063674808614643911777434018306008294121110388855986659873852509603540473397396322563} a^{12} + \frac{288514018475676312156583439511950167640251840070900045116538860355869104853339059166866470087403886055517}{5051989438081250538401700422894761083029551774201366091235332214277415853258612377605638945207371359548193} a^{11} - \frac{17058520018733526791337312838390516088654934357938659518849450804018650323299391209131404190860298340284}{459271767098295503491063674808614643911777434018306008294121110388855986659873852509603540473397396322563} a^{10} + \frac{799986382924304317212814246030067149843289670508605909084468099402288497943573241550464366980017850004533}{5051989438081250538401700422894761083029551774201366091235332214277415853258612377605638945207371359548193} a^{9} + \frac{20381602012709201479098359159968491440671601948872245239598177448109150794554844821017059904792894618286}{41751978827117773044642152255328603991979766728936909844920100944441453332715804773600321861217945120233} a^{8} + \frac{104717286349377956308282836127845683884016274702503651612705028568891089191258647410824556452195944265479}{388614572160096195261669263299597006386888598015489699325794785713647373327585567508126072708259335349861} a^{7} + \frac{1665672043017197819879860616559092926060733145626167828698504472139088003635875404272512906829706108446909}{5051989438081250538401700422894761083029551774201366091235332214277415853258612377605638945207371359548193} a^{6} + \frac{120274784273817003412165664564064149743377327741868811113924266540593378468427672010162156764398199012959}{5051989438081250538401700422894761083029551774201366091235332214277415853258612377605638945207371359548193} a^{5} + \frac{113767259755060463069968670877883728439037377359392179616962532468962903495347473236978053494420589307427}{388614572160096195261669263299597006386888598015489699325794785713647373327585567508126072708259335349861} a^{4} + \frac{120054762802332505161798685759112707994035950812221884300617840236188354073484040451198809390417142807261}{459271767098295503491063674808614643911777434018306008294121110388855986659873852509603540473397396322563} a^{3} - \frac{861132941860670897315158807175576689981218093289325596978035824852048523086999505384121689691080394015627}{5051989438081250538401700422894761083029551774201366091235332214277415853258612377605638945207371359548193} a^{2} - \frac{2071307412226076893656619464178411115691940870572928274244145228158768361641235723641723922465358177078625}{5051989438081250538401700422894761083029551774201366091235332214277415853258612377605638945207371359548193} a - \frac{2357039563719601307143742700421910672100024349503050084161861086109662195789140167460286985921683708368561}{5051989438081250538401700422894761083029551774201366091235332214277415853258612377605638945207371359548193}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1569680115190000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 734832 |
| The 72 conjugacy class representatives for t21n119 are not computed |
| Character table for t21n119 is not computed |
Intermediate fields
| 7.3.2007889.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 21 sibling: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }{,}\,{\href{/LocalNumberField/2.7.0.1}{7} }$ | R | $21$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | $21$ | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.7.0.1}{7} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.7.0.1 | $x^{7} + x^{2} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 3.14.7.2 | $x^{14} + 243 x^{4} - 729 x^{2} + 2187$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $31$ | 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.4.0.1 | $x^{4} - 2 x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 31.4.0.1 | $x^{4} - 2 x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 31.4.0.1 | $x^{4} - 2 x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 31.4.0.1 | $x^{4} - 2 x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 109 | Data not computed | ||||||
| 850807588597 | Data not computed | ||||||