Normalized defining polynomial
\( x^{21} + 60 x^{19} - 40 x^{18} + 1386 x^{17} - 1848 x^{16} + 15898 x^{15} - 30564 x^{14} + 99351 x^{13} - 215128 x^{12} + 347166 x^{11} - 548820 x^{10} + 461451 x^{9} + 239796 x^{8} - 1359084 x^{7} + 2896288 x^{6} - 4396464 x^{5} + 4481856 x^{4} - 2917184 x^{3} + 1161216 x^{2} - 258048 x + 24576 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-141295796391428497217987790912262400704772214620160=-\,2^{41}\cdot 3^{23}\cdot 5\cdot 7^{12}\cdot 31^{9}\cdot 373\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $244.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 31, 373$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{8} a^{14} - \frac{1}{4} a^{13} + \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} - \frac{1}{8} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{3}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{32} a^{15} - \frac{1}{16} a^{14} - \frac{1}{4} a^{13} + \frac{1}{4} a^{12} + \frac{5}{16} a^{11} - \frac{3}{8} a^{10} + \frac{1}{16} a^{9} - \frac{1}{4} a^{8} - \frac{9}{32} a^{7} - \frac{3}{16} a^{6} - \frac{7}{16} a^{5} + \frac{1}{4} a^{4} - \frac{5}{32} a^{3} - \frac{1}{16} a^{2}$, $\frac{1}{64} a^{16} - \frac{1}{16} a^{14} + \frac{1}{8} a^{13} - \frac{3}{32} a^{12} + \frac{1}{8} a^{11} + \frac{13}{32} a^{10} - \frac{1}{16} a^{9} - \frac{9}{64} a^{8} + \frac{1}{8} a^{7} - \frac{1}{32} a^{6} - \frac{1}{16} a^{5} - \frac{5}{64} a^{4} + \frac{5}{16} a^{3} - \frac{3}{16} a^{2} - \frac{1}{4} a$, $\frac{1}{512} a^{17} + \frac{1}{128} a^{15} - \frac{1}{64} a^{14} + \frac{61}{256} a^{13} - \frac{15}{64} a^{12} + \frac{21}{256} a^{11} + \frac{39}{128} a^{10} + \frac{71}{512} a^{9} - \frac{23}{64} a^{8} - \frac{69}{256} a^{7} + \frac{35}{128} a^{6} - \frac{181}{512} a^{5} - \frac{11}{128} a^{4} + \frac{51}{128} a^{3} + \frac{7}{16} a^{2} - \frac{1}{4} a$, $\frac{1}{3837952} a^{18} + \frac{1}{2048} a^{17} - \frac{2555}{959488} a^{16} + \frac{307}{29984} a^{15} - \frac{15467}{1918976} a^{14} - \frac{117433}{959488} a^{13} - \frac{822355}{1918976} a^{12} + \frac{114673}{239872} a^{11} - \frac{4897}{3837952} a^{10} + \frac{178595}{1918976} a^{9} + \frac{353275}{1918976} a^{8} - \frac{22381}{479744} a^{7} + \frac{1027203}{3837952} a^{6} + \frac{531085}{1918976} a^{5} + \frac{448665}{959488} a^{4} - \frac{56569}{479744} a^{3} + \frac{2901}{7496} a^{2} - \frac{3}{937} a + \frac{1563}{3748}$, $\frac{1}{30703616} a^{19} - \frac{1}{7675904} a^{18} + \frac{1065}{3837952} a^{17} + \frac{5337}{3837952} a^{16} - \frac{94059}{15351808} a^{15} + \frac{2089}{119936} a^{14} - \frac{2127943}{15351808} a^{13} + \frac{1581493}{7675904} a^{12} - \frac{4135681}{30703616} a^{11} + \frac{289559}{7675904} a^{10} - \frac{4114727}{15351808} a^{9} - \frac{386819}{7675904} a^{8} - \frac{10894861}{30703616} a^{7} - \frac{1820765}{3837952} a^{6} - \frac{1504707}{3837952} a^{5} - \frac{101907}{959488} a^{4} + \frac{574211}{1918976} a^{3} + \frac{4493}{29984} a^{2} - \frac{13381}{29984} a - \frac{2189}{14992}$, $\frac{1}{245628928} a^{20} - \frac{1}{122814464} a^{19} - \frac{7525}{30703616} a^{17} + \frac{747741}{122814464} a^{16} - \frac{586539}{61407232} a^{15} + \frac{3409529}{122814464} a^{14} + \frac{5025495}{30703616} a^{13} - \frac{121132505}{245628928} a^{12} - \frac{45753555}{122814464} a^{11} - \frac{33927211}{122814464} a^{10} - \frac{12958021}{30703616} a^{9} - \frac{20788645}{245628928} a^{8} + \frac{4564863}{122814464} a^{7} + \frac{11077899}{30703616} a^{6} - \frac{6831761}{15351808} a^{5} + \frac{6274727}{15351808} a^{4} - \frac{3816525}{7675904} a^{3} - \frac{53863}{239872} a^{2} + \frac{25247}{59968} a - \frac{15021}{59968}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 531001429404000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 11757312 |
| The 168 conjugacy class representatives for t21n142 are not computed |
| Character table for t21n142 is not computed |
Intermediate fields
| 7.7.36622433792.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | $18{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | $18{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.9.5 | $x^{6} - 4 x^{4} + 4 x^{2} + 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.12.30.138 | $x^{12} - 6 x^{10} + 19 x^{8} + 28 x^{6} + 27 x^{4} + 2 x^{2} + 1$ | $4$ | $3$ | $30$ | 12T87 | $[2, 2, 2, 3, 7/2, 7/2]^{3}$ | |
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| $31$ | 31.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 31.6.3.1 | $x^{6} - 62 x^{4} + 961 x^{2} - 2413071$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 31.12.6.1 | $x^{12} + 178746 x^{6} - 114516604 x^{2} + 7987533129$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 373 | Data not computed | ||||||