Normalized defining polynomial
\( x^{21} - 3 x^{19} - 2 x^{18} - 27 x^{17} - 36 x^{16} + 15 x^{15} + 54 x^{14} + 360 x^{13} + 872 x^{12} + 621 x^{11} - 426 x^{10} - 1745 x^{9} - 3636 x^{8} - 2913 x^{7} + 5854 x^{6} + 18252 x^{5} + 22104 x^{4} + 15056 x^{3} + 6048 x^{2} + 1344 x + 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1387347928027439932553142925836288=-\,2^{14}\cdot 3^{21}\cdot 13^{6}\cdot 109^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} + \frac{1}{8} a^{13} + \frac{1}{4} a^{12} + \frac{1}{8} a^{11} + \frac{3}{8} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{3}{8} a^{5} + \frac{1}{4} a^{4} + \frac{3}{8} a^{3} + \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} + \frac{25}{64} a^{14} - \frac{1}{4} a^{13} - \frac{19}{64} a^{12} + \frac{3}{32} a^{11} + \frac{3}{64} a^{10} - \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{3}{8} a^{7} + \frac{13}{64} a^{6} + \frac{1}{4} a^{5} + \frac{7}{64} a^{4} - \frac{11}{32} a^{3} + \frac{11}{64} a^{2} - \frac{3}{16} a - \frac{5}{16}$, $\frac{1}{512} a^{17} + \frac{21}{512} a^{15} - \frac{33}{256} a^{14} + \frac{13}{512} a^{13} + \frac{27}{128} a^{12} - \frac{73}{512} a^{11} + \frac{91}{256} a^{10} + \frac{31}{64} a^{8} - \frac{195}{512} a^{7} - \frac{37}{256} a^{6} + \frac{231}{512} a^{5} + \frac{7}{128} a^{4} + \frac{55}{512} a^{3} - \frac{17}{256} a^{2} + \frac{49}{128} a + \frac{21}{64}$, $\frac{1}{4096} a^{18} - \frac{1}{2048} a^{17} + \frac{21}{4096} a^{16} - \frac{27}{1024} a^{15} + \frac{657}{4096} a^{14} + \frac{41}{2048} a^{13} - \frac{801}{4096} a^{12} - \frac{23}{512} a^{11} - \frac{219}{1024} a^{10} + \frac{223}{512} a^{9} + \frac{333}{4096} a^{8} - \frac{433}{1024} a^{7} - \frac{1669}{4096} a^{6} - \frac{985}{2048} a^{5} + \frac{1023}{4096} a^{4} + \frac{23}{256} a^{3} - \frac{95}{512} a^{2} - \frac{55}{128} a - \frac{85}{256}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} + \frac{25}{32768} a^{17} - \frac{75}{16384} a^{16} + \frac{873}{32768} a^{15} - \frac{333}{2048} a^{14} - \frac{965}{32768} a^{13} + \frac{2757}{16384} a^{12} - \frac{127}{8192} a^{11} + \frac{221}{2048} a^{10} + \frac{13149}{32768} a^{9} - \frac{5295}{16384} a^{8} + \frac{1795}{32768} a^{7} - \frac{853}{4096} a^{6} + \frac{13155}{32768} a^{5} + \frac{1209}{16384} a^{4} + \frac{325}{4096} a^{3} + \frac{497}{2048} a^{2} + \frac{903}{2048} a + \frac{341}{1024}$, $\frac{1}{262144} a^{20} + \frac{1}{131072} a^{19} + \frac{1}{262144} a^{18} - \frac{27}{262144} a^{16} - \frac{45}{131072} a^{15} - \frac{165}{262144} a^{14} - \frac{69}{65536} a^{13} - \frac{3}{4096} a^{12} + \frac{61}{32768} a^{11} + \frac{1597}{262144} a^{10} + \frac{173}{16384} a^{9} + \frac{3791}{262144} a^{8} + \frac{1973}{131072} a^{7} + \frac{4979}{262144} a^{6} + \frac{3953}{65536} a^{5} + \frac{12469}{65536} a^{4} + \frac{119}{256} a^{3} - \frac{211}{16384} a^{2} - \frac{11}{4096} a - \frac{1}{4096}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 435235767.296 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 47029248 |
| The 228 conjugacy class representatives for t21n147 are not computed |
| Character table for t21n147 is not computed |
Intermediate fields
| 7.3.2007889.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.7.0.1}{7} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.29 | $x^{14} + 2 x^{13} - x^{12} + 2 x^{7} + 2 x^{5} + 2 x^{3} + 2 x - 1$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2]^{14}$ | |
| 3 | Data not computed | ||||||
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.12.6.2 | $x^{12} + 28561 x^{4} - 742586 x^{2} + 9653618$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ | |
| $109$ | 109.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 109.6.3.2 | $x^{6} - 11881 x^{2} + 12950290$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 109.6.0.1 | $x^{6} - x + 11$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 109.6.3.1 | $x^{6} - 218 x^{4} + 11881 x^{2} - 129502900$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |