Normalized defining polynomial
\( x^{21} + 84 x^{19} - 56 x^{18} + 2736 x^{17} - 3648 x^{16} + 43984 x^{15} - 85536 x^{14} + 368064 x^{13} - 842112 x^{12} + 1498176 x^{11} - 2597760 x^{10} + 887424 x^{9} + 6603264 x^{8} - 19805952 x^{7} + 41370112 x^{6} - 63839232 x^{5} + 65562624 x^{4} - 42766336 x^{3} + 17031168 x^{2} - 3784704 x + 360448 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1336905397440735612565123035386017427050463232=-\,2^{24}\cdot 3^{21}\cdot 11^{2}\cdot 73^{12}\cdot 2749\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $140.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 73, 2749$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{16} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{32} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{64} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{128} a^{13}$, $\frac{1}{256} a^{14}$, $\frac{1}{512} a^{15} - \frac{1}{8} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{2048} a^{16} - \frac{1}{1024} a^{15} - \frac{1}{256} a^{13} - \frac{1}{128} a^{12} + \frac{1}{128} a^{10} - \frac{1}{32} a^{8} + \frac{1}{32} a^{6} + \frac{1}{16} a^{4} + \frac{1}{8} a^{3} - \frac{1}{8} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8192} a^{17} - \frac{1}{2048} a^{15} + \frac{1}{1024} a^{14} + \frac{1}{512} a^{11} + \frac{3}{256} a^{10} + \frac{1}{128} a^{9} - \frac{1}{64} a^{8} - \frac{3}{128} a^{7} - \frac{3}{64} a^{6} + \frac{1}{64} a^{5} - \frac{1}{16} a^{4} - \frac{7}{32} a^{3} - \frac{3}{16} a^{2} + \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{32768} a^{18} - \frac{1}{16384} a^{17} - \frac{1}{8192} a^{16} + \frac{1}{2048} a^{15} - \frac{1}{2048} a^{14} + \frac{1}{2048} a^{12} - \frac{3}{512} a^{11} + \frac{3}{256} a^{10} + \frac{1}{128} a^{9} + \frac{9}{512} a^{8} + \frac{7}{256} a^{6} + \frac{13}{128} a^{5} + \frac{13}{128} a^{4} + \frac{3}{16} a^{3} - \frac{1}{8} a^{2} - \frac{3}{8} a - \frac{3}{8}$, $\frac{1}{131072} a^{19} - \frac{1}{16384} a^{17} + \frac{1}{16384} a^{16} + \frac{1}{8192} a^{15} - \frac{1}{4096} a^{14} - \frac{31}{8192} a^{13} + \frac{11}{4096} a^{12} - \frac{1}{128} a^{10} - \frac{15}{2048} a^{9} + \frac{25}{1024} a^{8} + \frac{7}{1024} a^{7} + \frac{5}{128} a^{6} - \frac{57}{512} a^{5} - \frac{7}{256} a^{4} + \frac{1}{16} a^{3} - \frac{5}{32} a^{2} + \frac{15}{32} a + \frac{5}{16}$, $\frac{1}{524288} a^{20} - \frac{1}{262144} a^{19} - \frac{1}{65536} a^{18} + \frac{3}{65536} a^{17} + \frac{7}{8192} a^{15} + \frac{37}{32768} a^{14} - \frac{11}{8192} a^{13} - \frac{11}{8192} a^{12} + \frac{3}{512} a^{11} + \frac{17}{8192} a^{10} + \frac{5}{512} a^{9} - \frac{107}{4096} a^{8} + \frac{13}{2048} a^{7} + \frac{31}{2048} a^{6} + \frac{57}{512} a^{5} + \frac{15}{512} a^{4} + \frac{7}{128} a^{3} - \frac{7}{128} a^{2} + \frac{3}{32} a + \frac{11}{32}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1131816948560000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5878656 |
| The 183 conjugacy class representatives for t21n137 are not computed |
| Character table for t21n137 is not computed |
Intermediate fields
| 7.7.1817487424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.18.6 | $x^{14} + 2 x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{5} + 2 x^{4} + 2$ | $14$ | $1$ | $18$ | 14T35 | $[8/7, 8/7, 8/7, 12/7, 12/7, 12/7]_{7}^{3}$ | |
| 3 | Data not computed | ||||||
| $11$ | 11.3.2.1 | $x^{3} - 11$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 11.9.0.1 | $x^{9} - x + 3$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
| 73 | Data not computed | ||||||
| 2749 | Data not computed | ||||||