Normalized defining polynomial
\( x^{21} - 3 x^{20} + x^{19} - 42 x^{18} - 157 x^{17} + 310 x^{16} + 5798 x^{15} - 3709 x^{14} - 92464 x^{13} + 474108 x^{12} - 2368117 x^{11} + 9006061 x^{10} - 20442035 x^{9} + 24167098 x^{8} + 18849199 x^{7} - 129416738 x^{6} + 120608306 x^{5} + 151200437 x^{4} - 174966569 x^{3} - 172336121 x^{2} + 129418146 x + 31235087 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-12714375279672778294362958922197224914944=-\,2^{18}\cdot 29^{6}\cdot 31^{7}\cdot 379^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 29, 31, 379$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{24861945532147592687371824401002259029675068539421871483622854117874884564192684058559992821553} a^{20} + \frac{485842649925543043225953274263132588483439830107730730537324407517562471233635210235642295955}{24861945532147592687371824401002259029675068539421871483622854117874884564192684058559992821553} a^{19} + \frac{11854850850298116763569133893569953169063246069220474263031189112517940418433194092407786258754}{24861945532147592687371824401002259029675068539421871483622854117874884564192684058559992821553} a^{18} + \frac{8129087110191225311388968076486908851664885496188660289879787126391960309765486852986918331149}{24861945532147592687371824401002259029675068539421871483622854117874884564192684058559992821553} a^{17} - \frac{3574593237167161264941389636347224371456672555100004115134643831506376012319080366497509543631}{24861945532147592687371824401002259029675068539421871483622854117874884564192684058559992821553} a^{16} - \frac{2789829787070190172917875007862531610147665991705018104562223184102846627744823548091558713358}{24861945532147592687371824401002259029675068539421871483622854117874884564192684058559992821553} a^{15} - \frac{592393676743539953873700595155864284782587255369870559049705227061315116075200136492531390069}{1912457348626737899028601877000173771513466810724759344894065701374991120322514158350768678581} a^{14} - \frac{7151755417707039763208033403631680326505435920669031286654385243698882369172074683424689907913}{24861945532147592687371824401002259029675068539421871483622854117874884564192684058559992821553} a^{13} - \frac{10805305150307974039520859631403036122483720908585767369305829990210105691327757329225203424812}{24861945532147592687371824401002259029675068539421871483622854117874884564192684058559992821553} a^{12} - \frac{5882568324381340617801264561628131346509553948947022750499034367853220338717784690956671347964}{24861945532147592687371824401002259029675068539421871483622854117874884564192684058559992821553} a^{11} - \frac{6010615223904438196705716626482183317660720146198420470561967077161766178374221477442676113804}{24861945532147592687371824401002259029675068539421871483622854117874884564192684058559992821553} a^{10} - \frac{5496774903849442614158189410204377823634351501340329750318508978592292033953389632663233234547}{24861945532147592687371824401002259029675068539421871483622854117874884564192684058559992821553} a^{9} - \frac{5291368911611267128320241130886206220068886357911429170758660409357806173325652507194381354719}{24861945532147592687371824401002259029675068539421871483622854117874884564192684058559992821553} a^{8} + \frac{7650106722343562618914021861760361243814979541821371696922344394428740479945148045175712593477}{24861945532147592687371824401002259029675068539421871483622854117874884564192684058559992821553} a^{7} - \frac{10226146618271158609907112668107319122975224084567372305621168615002408382332321166604071651578}{24861945532147592687371824401002259029675068539421871483622854117874884564192684058559992821553} a^{6} - \frac{5610026028999137483753009808594258955416183393172967312661866032112702905011274193513761812148}{24861945532147592687371824401002259029675068539421871483622854117874884564192684058559992821553} a^{5} - \frac{315418995995424353045913775951965292898457866248334609309844373548094433259087436931086235998}{1912457348626737899028601877000173771513466810724759344894065701374991120322514158350768678581} a^{4} + \frac{11358602680770957169126021616630237347179860704889350662427043602784747246625413902111045533262}{24861945532147592687371824401002259029675068539421871483622854117874884564192684058559992821553} a^{3} - \frac{12353968516020475864942652052258200495543691020467230235377793675880714265091634580070620013953}{24861945532147592687371824401002259029675068539421871483622854117874884564192684058559992821553} a^{2} + \frac{5190859753200830389601578606829235028639254009099313401055610569244831098822789319069988940313}{24861945532147592687371824401002259029675068539421871483622854117874884564192684058559992821553} a - \frac{538674322476139509993376694106687148725271775805119520307711241735029822335513379678441828937}{1912457348626737899028601877000173771513466810724759344894065701374991120322514158350768678581}$
Class group and class number
$C_{7}$, which has order $7$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 105149816421 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2058 |
| The 140 conjugacy class representatives for t21n32 are not computed |
| Character table for t21n32 is not computed |
Intermediate fields
| 3.1.31.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.7.0.1}{7} }$ | $21$ | $21$ | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | R | R | ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $29$ | 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.14.0.1 | $x^{14} - x + 14$ | $1$ | $14$ | $0$ | $C_{14}$ | $[\ ]^{14}$ | |
| $31$ | 31.7.0.1 | $x^{7} - x + 18$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 31.14.7.2 | $x^{14} - 887503681 x^{2} + 495227053998$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| 379 | Data not computed | ||||||