Normalized defining polynomial
\( x^{21} + 36 x^{19} - 24 x^{18} + 477 x^{17} - 636 x^{16} + 2912 x^{15} - 5400 x^{14} + 7893 x^{13} - 12248 x^{12} - 3132 x^{11} + 43512 x^{10} - 108421 x^{9} + 221076 x^{8} - 313047 x^{7} + 275646 x^{6} - 152172 x^{5} + 57816 x^{4} - 19024 x^{3} + 6048 x^{2} - 1344 x + 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-117847491094002618106110842754501058019328=-\,2^{14}\cdot 3^{21}\cdot 97\cdot 577^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 97, 577$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} - \frac{3}{8} a^{11} - \frac{1}{2} a^{9} - \frac{3}{8} a^{7} - \frac{1}{2} a^{6} + \frac{3}{8} a^{3} - \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{64} a^{16} - \frac{1}{32} a^{15} - \frac{3}{8} a^{13} + \frac{29}{64} a^{12} + \frac{5}{32} a^{11} + \frac{1}{16} a^{10} + \frac{5}{64} a^{8} + \frac{15}{32} a^{7} - \frac{1}{8} a^{5} + \frac{27}{64} a^{4} + \frac{15}{32} a^{3} - \frac{11}{64} a^{2} - \frac{3}{16} a + \frac{5}{16}$, $\frac{1}{512} a^{17} - \frac{1}{128} a^{15} - \frac{27}{64} a^{14} - \frac{83}{512} a^{13} + \frac{17}{128} a^{12} - \frac{13}{64} a^{11} + \frac{1}{64} a^{10} - \frac{123}{512} a^{9} - \frac{11}{64} a^{8} - \frac{33}{128} a^{7} - \frac{17}{64} a^{6} - \frac{245}{512} a^{5} - \frac{43}{128} a^{4} + \frac{177}{512} a^{3} - \frac{17}{256} a^{2} - \frac{1}{128} a + \frac{5}{64}$, $\frac{1}{4096} a^{18} + \frac{1}{2048} a^{17} - \frac{1}{1024} a^{16} - \frac{7}{128} a^{15} - \frac{3}{4096} a^{14} + \frac{719}{2048} a^{13} + \frac{17}{128} a^{12} - \frac{217}{512} a^{11} - \frac{1131}{4096} a^{10} + \frac{601}{2048} a^{9} + \frac{51}{1024} a^{8} - \frac{121}{256} a^{7} - \frac{517}{4096} a^{6} + \frac{693}{2048} a^{5} - \frac{167}{4096} a^{4} + \frac{29}{64} a^{3} + \frac{183}{512} a^{2} + \frac{17}{128} a - \frac{59}{256}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} - \frac{1}{2048} a^{17} - \frac{25}{4096} a^{16} + \frac{1341}{32768} a^{15} + \frac{603}{2048} a^{14} - \frac{3045}{8192} a^{13} + \frac{1423}{4096} a^{12} - \frac{11195}{32768} a^{11} - \frac{1075}{8192} a^{10} - \frac{219}{1024} a^{9} - \frac{907}{4096} a^{8} + \frac{11099}{32768} a^{7} + \frac{1073}{4096} a^{6} - \frac{12579}{32768} a^{5} + \frac{3477}{16384} a^{4} - \frac{185}{4096} a^{3} + \frac{253}{2048} a^{2} - \frac{7}{2048} a - \frac{79}{1024}$, $\frac{1}{262144} a^{20} - \frac{1}{131072} a^{19} - \frac{3}{32768} a^{18} - \frac{29}{32768} a^{17} + \frac{941}{262144} a^{16} + \frac{6165}{131072} a^{15} + \frac{1779}{65536} a^{14} - \frac{6955}{16384} a^{13} + \frac{11573}{262144} a^{12} + \frac{3039}{131072} a^{11} + \frac{2145}{32768} a^{10} + \frac{9629}{32768} a^{9} + \frac{94891}{262144} a^{8} + \frac{64543}{131072} a^{7} - \frac{28179}{262144} a^{6} + \frac{11833}{65536} a^{5} + \frac{27683}{65536} a^{4} + \frac{17}{4096} a^{3} - \frac{5645}{16384} a^{2} - \frac{555}{4096} a + \frac{945}{4096}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2316032975570 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3919104 |
| The 288 conjugacy class representatives for t21n131 are not computed |
| Character table for t21n131 is not computed |
Intermediate fields
| 7.7.192100033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | $21$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.29 | $x^{14} + 2 x^{13} - x^{12} + 2 x^{7} + 2 x^{5} + 2 x^{3} + 2 x - 1$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2]^{14}$ | |
| 3 | Data not computed | ||||||
| 97 | Data not computed | ||||||
| 577 | Data not computed | ||||||