Normalized defining polynomial
\( x^{21} - 54 x^{19} - 142 x^{18} + 1125 x^{17} + 5550 x^{16} - 6017 x^{15} - 77418 x^{14} - 70674 x^{13} + 434534 x^{12} + 848124 x^{11} - 983280 x^{10} - 3192759 x^{9} + 1467252 x^{8} + 8862276 x^{7} + 2890596 x^{6} - 11439792 x^{5} - 12529152 x^{4} - 3350624 x^{3} + 785664 x^{2} + 160896 x - 49664 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-109390621596084700860007929456175983133704192=-\,2^{14}\cdot 3^{21}\cdot 149^{6}\cdot 211^{6}\cdot 661\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $125.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 149, 211, 661$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} + \frac{1}{4} a^{11} - \frac{1}{2} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{3}$, $\frac{1}{8} a^{16} - \frac{1}{4} a^{14} + \frac{1}{4} a^{13} - \frac{3}{8} a^{12} - \frac{1}{4} a^{11} + \frac{3}{8} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{17} - \frac{1}{8} a^{15} + \frac{1}{8} a^{14} - \frac{3}{16} a^{13} + \frac{3}{8} a^{12} + \frac{3}{16} a^{11} - \frac{1}{8} a^{10} - \frac{3}{8} a^{9} - \frac{1}{8} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{7}{16} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{32} a^{18} - \frac{1}{16} a^{16} + \frac{1}{16} a^{15} - \frac{3}{32} a^{14} - \frac{5}{16} a^{13} + \frac{3}{32} a^{12} - \frac{1}{16} a^{11} + \frac{5}{16} a^{10} + \frac{7}{16} a^{9} + \frac{1}{8} a^{8} + \frac{1}{4} a^{7} - \frac{7}{32} a^{6} - \frac{3}{8} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{19} - \frac{1}{32} a^{17} + \frac{1}{32} a^{16} - \frac{3}{64} a^{15} - \frac{5}{32} a^{14} + \frac{3}{64} a^{13} + \frac{15}{32} a^{12} - \frac{11}{32} a^{11} - \frac{9}{32} a^{10} - \frac{7}{16} a^{9} + \frac{1}{8} a^{8} - \frac{7}{64} a^{7} + \frac{5}{16} a^{6} + \frac{3}{8} a^{5} + \frac{1}{16} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{14922023511724842989664838190159286793855605483597214216767399296} a^{20} + \frac{4407061216660712250770658661669908512566026030263548338523683}{3730505877931210747416209547539821698463901370899303554191849824} a^{19} - \frac{81068553522486174734024011845215516329814978153292961889819179}{7461011755862421494832419095079643396927802741798607108383699648} a^{18} - \frac{144479907687927689905865404012123370241403168616559585904394707}{7461011755862421494832419095079643396927802741798607108383699648} a^{17} - \frac{380261401781168562818804461118127943144430261668273539672215507}{14922023511724842989664838190159286793855605483597214216767399296} a^{16} - \frac{586195604389050342258264878400132117161426057929150482348206811}{7461011755862421494832419095079643396927802741798607108383699648} a^{15} + \frac{3047013060792251965620941496139748355546670059561804175389621127}{14922023511724842989664838190159286793855605483597214216767399296} a^{14} - \frac{1739775983899370271234111571335145990697286452382769901038941971}{7461011755862421494832419095079643396927802741798607108383699648} a^{13} + \frac{2238961763489992883388221451037359503663633121029368269664904595}{7461011755862421494832419095079643396927802741798607108383699648} a^{12} + \frac{415526641860024595527079097252606157174520344405638814370078943}{7461011755862421494832419095079643396927802741798607108383699648} a^{11} - \frac{1096185440317190944306674391071595266838035554808048722312680947}{3730505877931210747416209547539821698463901370899303554191849824} a^{10} - \frac{49296504611107189443785330379001562641165684605963835607136279}{466313234741401343427026193442477712307987671362412944273981228} a^{9} + \frac{5265347193887805425358365720153812445700892682704179382425578633}{14922023511724842989664838190159286793855605483597214216767399296} a^{8} + \frac{59136311662785746701241707609265819421228071830893771797441119}{233156617370700671713513096721238856153993835681206472136990614} a^{7} - \frac{503422319120775285775340289631238570539540962984489839168972171}{3730505877931210747416209547539821698463901370899303554191849824} a^{6} - \frac{652646907074997891535799140900934090088506759248615191478544831}{3730505877931210747416209547539821698463901370899303554191849824} a^{5} + \frac{296969763975263978544288954413613981380777304251520612569644639}{932626469482802686854052386884955424615975342724825888547962456} a^{4} + \frac{1874025067470606491994198714464920975273388661074660136753084}{116578308685350335856756548360619428076996917840603236068495307} a^{3} - \frac{32495482001920013409448961045974432251588031035389888460531625}{466313234741401343427026193442477712307987671362412944273981228} a^{2} - \frac{25017537480159962686066203427836057275681549494408013169245803}{233156617370700671713513096721238856153993835681206472136990614} a + \frac{5135262125614560357927522071102171472442134875886937508772785}{116578308685350335856756548360619428076996917840603236068495307}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 647248138887000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 705438720 |
| The 246 conjugacy class representatives for t21n151 are not computed |
| Character table for t21n151 is not computed |
Intermediate fields
| 7.7.988410721.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | $21$ | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.7.0.1}{7} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.13 | $x^{10} - 15 x^{8} + 26 x^{6} - 22 x^{4} + 37 x^{2} - 59$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| 3 | Data not computed | ||||||
| 149 | Data not computed | ||||||
| 211 | Data not computed | ||||||
| 661 | Data not computed | ||||||