Normalized defining polynomial
\( x^{21} - 37 x^{19} - 7 x^{18} + 631 x^{17} - 160 x^{16} - 7660 x^{15} + 5137 x^{14} + 56640 x^{13} - 76851 x^{12} - 243751 x^{11} + 479095 x^{10} + 411482 x^{9} - 1347008 x^{8} + 92559 x^{7} + 992616 x^{6} - 416686 x^{5} + 955747 x^{4} + 870892 x^{3} - 1275931 x^{2} - 1256035 x - 284261 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 7]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1090199518881106278058570421221868699648=-\,2^{18}\cdot 7^{12}\cdot 23^{7}\cdot 211^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 23, 211$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{487973192482315251915129534952225358597688194093697337357686743} a^{20} + \frac{89388388998921416153073838341417501692498159601382582280903511}{487973192482315251915129534952225358597688194093697337357686743} a^{19} + \frac{52996961884433126299443917954962767077002718133271367169216918}{487973192482315251915129534952225358597688194093697337357686743} a^{18} - \frac{186655384203090706198467194479787621381156234827066037299338531}{487973192482315251915129534952225358597688194093697337357686743} a^{17} - \frac{154259612434849749790913556721633993720260054663653984905863208}{487973192482315251915129534952225358597688194093697337357686743} a^{16} - \frac{169630226396691322742719823998314562819422866871209259027255974}{487973192482315251915129534952225358597688194093697337357686743} a^{15} + \frac{121911576797121168141358065697569254504861954664894834926293831}{487973192482315251915129534952225358597688194093697337357686743} a^{14} + \frac{175787152176632079908833681620255748830229155578827881949824940}{487973192482315251915129534952225358597688194093697337357686743} a^{13} - \frac{94763743857123636373737160119837104360566939479910608335937560}{487973192482315251915129534952225358597688194093697337357686743} a^{12} - \frac{157675144575980096056411693326541828387881723978076860895986929}{487973192482315251915129534952225358597688194093697337357686743} a^{11} - \frac{171583685466161754921484920239219058958882700781800384808435868}{487973192482315251915129534952225358597688194093697337357686743} a^{10} - \frac{142047428040979003219292117310001595966052188915981001645029994}{487973192482315251915129534952225358597688194093697337357686743} a^{9} - \frac{210154134290462328963354851361885817791085312207698195768964262}{487973192482315251915129534952225358597688194093697337357686743} a^{8} - \frac{160787070718126887526194053586081949514785665683762458229317943}{487973192482315251915129534952225358597688194093697337357686743} a^{7} + \frac{220745111630019379060540667975255662522427452552252081970255320}{487973192482315251915129534952225358597688194093697337357686743} a^{6} + \frac{209527167109718765239625890188061466777780535204763092494525517}{487973192482315251915129534952225358597688194093697337357686743} a^{5} - \frac{216006051261538501749063255755210994222310244903862937936403407}{487973192482315251915129534952225358597688194093697337357686743} a^{4} - \frac{83772187869059261114402993221508409426161926150641802485953868}{487973192482315251915129534952225358597688194093697337357686743} a^{3} - \frac{86204770840272170861750578202553702900182404697221587120956994}{487973192482315251915129534952225358597688194093697337357686743} a^{2} - \frac{77880739646895208873414853431874671331707673713608758555011696}{487973192482315251915129534952225358597688194093697337357686743} a + \frac{125127603206027597616049372135973949510739303924254791386451795}{487973192482315251915129534952225358597688194093697337357686743}$
Class group and class number
$C_{7}$, which has order $7$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 34482408278.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2058 |
| The 140 conjugacy class representatives for t21n32 are not computed |
| Character table for t21n32 is not computed |
Intermediate fields
| 3.1.23.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/11.14.0.1}{14} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | R | $21$ | $21$ | ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.7.0.1}{7} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $23$ | 23.7.0.1 | $x^{7} - x + 8$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 23.14.7.2 | $x^{14} - 148035889 x^{2} + 27238603576$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| 211 | Data not computed | ||||||