/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^21 - 21*x^19 - 12*x^18 + 189*x^17 + 216*x^16 - 897*x^15 - 1620*x^14 + 2115*x^13 + 6440*x^12 - 783*x^11 - 14100*x^10 - 8033*x^9 + 15336*x^8 + 18837*x^7 - 4012*x^6 - 16416*x^5 - 5736*x^4 + 4368*x^3 + 3744*x^2 + 1152*x + 128, 21, 147, [5, 8], 9711435496192079527872000480854016, [2, 3, 7, 13, 109], [1, a, a^2, 1/2*a^3 - 1/2*a, 1/2*a^4 - 1/2*a^2, 1/2*a^5 - 1/2*a, 1/4*a^6 - 1/4*a^2, 1/4*a^7 - 1/4*a^3, 1/4*a^8 - 1/4*a^4, 1/8*a^9 - 1/8*a^7 - 1/8*a^5 + 1/8*a^3, 1/8*a^10 - 1/8*a^8 - 1/8*a^6 + 1/8*a^4, 1/8*a^11 - 1/8*a^3, 1/16*a^12 - 1/8*a^8 + 1/16*a^4, 1/16*a^13 - 1/8*a^7 - 1/16*a^5 + 1/8*a^3, 1/16*a^14 - 1/8*a^8 - 1/16*a^6 + 1/8*a^4, 1/32*a^15 - 1/32*a^13 - 1/16*a^11 - 1/16*a^9 - 3/32*a^7 + 3/32*a^5 + 1/8*a^3, 1/32*a^16 - 1/32*a^14 - 1/16*a^10 + 1/32*a^8 + 3/32*a^6 - 1/16*a^4, 1/32*a^17 - 1/32*a^13 - 1/32*a^9 + 1/32*a^5, 1/64*a^18 + 1/64*a^14 + 3/64*a^10 - 1/8*a^8 - 5/64*a^6 + 1/8*a^4, 1/64*a^19 - 1/64*a^15 - 1/32*a^13 - 1/64*a^11 - 1/16*a^9 - 7/64*a^7 + 3/32*a^5 + 1/8*a^3, 1/64*a^20 - 1/64*a^16 - 1/32*a^14 - 1/64*a^12 - 1/16*a^10 - 7/64*a^8 + 3/32*a^6 + 1/8*a^4], 0, 1, [], 1, [ (1)/(2)*a^(3) - (3)/(2)*a - 1 , (1)/(32)*a^(18) - (9)/(16)*a^(16) - (11)/(32)*a^(15) + (135)/(32)*a^(14) + (165)/(32)*a^(13) - (251)/(16)*a^(12) - (495)/(16)*a^(11) + (759)/(32)*a^(10) + (1481)/(16)*a^(9) + (297)/(16)*a^(8) - (4383)/(32)*a^(7) - (3559)/(32)*a^(6) + (2457)/(32)*a^(5) + (2091)/(16)*a^(4) + (61)/(4)*a^(3) - (207)/(4)*a^(2) - (51)/(2)*a - 4 , (1)/(32)*a^(18) - (9)/(16)*a^(16) - (11)/(32)*a^(15) + (135)/(32)*a^(14) + (165)/(32)*a^(13) - (63)/(4)*a^(12) - (495)/(16)*a^(11) + (783)/(32)*a^(10) + (1487)/(16)*a^(9) + (243)/(16)*a^(8) - (4491)/(32)*a^(7) - (3343)/(32)*a^(6) + (2781)/(32)*a^(5) + (1005)/(8)*a^(4) + (21)/(8)*a^(3) - (207)/(4)*a^(2) - 18*a - 3 , (1)/(64)*a^(18) - (9)/(32)*a^(16) - (5)/(32)*a^(15) + (135)/(64)*a^(14) + (75)/(32)*a^(13) - (129)/(16)*a^(12) - (225)/(16)*a^(11) + (927)/(64)*a^(10) + (687)/(16)*a^(9) - (81)/(32)*a^(8) - (2241)/(32)*a^(7) - (2055)/(64)*a^(6) + (1863)/(32)*a^(5) + (387)/(8)*a^(4) - (83)/(4)*a^(3) - 27*a^(2) + (3)/(2)*a + 2 , (1)/(32)*a^(20) - (37)/(64)*a^(18) - (3)/(8)*a^(17) + (145)/(32)*a^(16) + (187)/(32)*a^(15) - (1153)/(64)*a^(14) - (1193)/(32)*a^(13) + (991)/(32)*a^(12) + (1971)/(16)*a^(11) + (1097)/(64)*a^(10) - (3467)/(16)*a^(9) - (5185)/(32)*a^(8) + (5703)/(32)*a^(7) + (16781)/(64)*a^(6) - (613)/(32)*a^(5) - 181*a^(4) - (259)/(4)*a^(3) + (155)/(4)*a^(2) + 32*a + 5 , (1)/(16)*a^(20) - (3)/(64)*a^(19) - (83)/(64)*a^(18) + (7)/(32)*a^(17) + (383)/(32)*a^(16) + (307)/(64)*a^(15) - (3945)/(64)*a^(14) - (467)/(8)*a^(13) + (721)/(4)*a^(12) + (18171)/(64)*a^(11) - (16181)/(64)*a^(10) - (23217)/(32)*a^(9) - (773)/(32)*a^(8) + (62549)/(64)*a^(7) + (36433)/(64)*a^(6) - (9189)/(16)*a^(5) - (5377)/(8)*a^(4) + (3)/(2)*a^(3) + (515)/(2)*a^(2) + (215)/(2)*a + 15 , (3)/(64)*a^(20) - a^(18) - (17)/(32)*a^(17) + (585)/(64)*a^(16) + (311)/(32)*a^(15) - (1423)/(32)*a^(14) - (1185)/(16)*a^(13) + (7153)/(64)*a^(12) + (4801)/(16)*a^(11) - (1245)/(16)*a^(10) - (21665)/(32)*a^(9) - (18985)/(64)*a^(8) + (25263)/(32)*a^(7) + (25705)/(32)*a^(6) - (2495)/(8)*a^(5) - (12045)/(16)*a^(4) - (685)/(4)*a^(3) + (475)/(2)*a^(2) + (303)/(2)*a + 33 , (1)/(8)*a^(20) - (5)/(64)*a^(19) - (81)/(32)*a^(18) - (1)/(32)*a^(17) + (731)/(32)*a^(16) + (909)/(64)*a^(15) - (1821)/(16)*a^(14) - (1107)/(8)*a^(13) + (2487)/(8)*a^(12) + (39589)/(64)*a^(11) - (11085)/(32)*a^(10) - (47653)/(32)*a^(9) - (11333)/(32)*a^(8) + (119891)/(64)*a^(7) + (2947)/(2)*a^(6) - (15031)/(16)*a^(5) - (24395)/(16)*a^(4) - 172*a^(3) + (2105)/(4)*a^(2) + 267*a + 52 , (1)/(64)*a^(20) - (5)/(16)*a^(18) - (3)/(16)*a^(17) + (171)/(64)*a^(16) + (51)/(16)*a^(15) - (383)/(32)*a^(14) - (359)/(16)*a^(13) + (1675)/(64)*a^(12) + (167)/(2)*a^(11) - (55)/(8)*a^(10) - (2751)/(16)*a^(9) - (6027)/(64)*a^(8) + (2909)/(16)*a^(7) + (6493)/(32)*a^(6) - (1023)/(16)*a^(5) - (2755)/(16)*a^(4) - 36*a^(3) + (203)/(4)*a^(2) + 27*a + 7 , (7)/(64)*a^(20) - (11)/(64)*a^(19) - (65)/(32)*a^(18) + (15)/(8)*a^(17) + (1139)/(64)*a^(16) - (271)/(64)*a^(15) - (2941)/(32)*a^(14) - (135)/(4)*a^(13) + (18277)/(64)*a^(12) + (16647)/(64)*a^(11) - (15819)/(32)*a^(10) - (3103)/(4)*a^(9) + (21297)/(64)*a^(8) + (74531)/(64)*a^(7) + (7849)/(32)*a^(6) - (6599)/(8)*a^(5) - (2033)/(4)*a^(4) + (681)/(4)*a^(3) + 213*a^(2) + 74*a + 9 , (1)/(64)*a^(20) - (5)/(64)*a^(19) - (15)/(64)*a^(18) + (5)/(4)*a^(17) + (139)/(64)*a^(16) - (559)/(64)*a^(15) - (977)/(64)*a^(14) + (1047)/(32)*a^(13) + (4599)/(64)*a^(12) - (3827)/(64)*a^(11) - (13297)/(64)*a^(10) + (147)/(16)*a^(9) + (22221)/(64)*a^(8) + (9951)/(64)*a^(7) - (19503)/(64)*a^(6) - (7973)/(32)*a^(5) + (461)/(4)*a^(4) + (1205)/(8)*a^(3) - (9)/(2)*a^(2) - (37)/(2)*a - 4 , (1)/(64)*a^(20) + (1)/(64)*a^(19) - (23)/(64)*a^(18) - (11)/(32)*a^(17) + (201)/(64)*a^(16) + (251)/(64)*a^(15) - (895)/(64)*a^(14) - (391)/(16)*a^(13) + (2051)/(64)*a^(12) + (5463)/(64)*a^(11) - (1429)/(64)*a^(10) - (5447)/(32)*a^(9) - (3581)/(64)*a^(8) + (11813)/(64)*a^(7) + (8875)/(64)*a^(6) - 89*a^(5) - (477)/(4)*a^(4) + (17)/(8)*a^(3) + 32*a^(2) + 14*a + 2 ], 835220003.258, [[x^7 - 2*x^6 - x^5 + 4*x^4 - 3*x^2 - x + 1, 1]]]