Normalized defining polynomial
\( x^{21} - 2 x^{20} - 107 x^{19} + 12 x^{18} + 5113 x^{17} + 8402 x^{16} - 127817 x^{15} - 435638 x^{14} + 1472941 x^{13} + 9521630 x^{12} + 1053675 x^{11} - 96583342 x^{10} - 208880543 x^{9} + 261576550 x^{8} + 1797849401 x^{7} + 2472649678 x^{6} - 2118845476 x^{5} - 12591311834 x^{4} - 20851985164 x^{3} - 18493569810 x^{2} - 8864880926 x - 1810155266 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(967513612600459482919915366453701038250655744=2^{24}\cdot 127^{2}\cdot 317^{6}\cdot 1867^{2}\cdot 1005409^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $138.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 127, 317, 1867, 1005409$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{19254717785941225337901202496072427927549983181027876611049175073692468859} a^{20} - \frac{5942891887982482920974489039142243764206948215351514211725495383641287381}{19254717785941225337901202496072427927549983181027876611049175073692468859} a^{19} + \frac{3051122111431103638176123552061167359504568173181508728736001061344722776}{19254717785941225337901202496072427927549983181027876611049175073692468859} a^{18} + \frac{3337961552230798459831836737299518932433528128240613410724374634568691940}{19254717785941225337901202496072427927549983181027876611049175073692468859} a^{17} + \frac{9586197732006805113053524119041319111579439696386412760369770167477796225}{19254717785941225337901202496072427927549983181027876611049175073692468859} a^{16} - \frac{1898958298599135086690157069111739669301846032028784386575316674157992858}{19254717785941225337901202496072427927549983181027876611049175073692468859} a^{15} + \frac{8965114429466756050716903521673156004230724331712616393055924901675270808}{19254717785941225337901202496072427927549983181027876611049175073692468859} a^{14} + \frac{8222610544014719282841477870838770808481043049831118694766255483501568971}{19254717785941225337901202496072427927549983181027876611049175073692468859} a^{13} - \frac{1366713105324574536428864218234246788259783095810080260078645737068626480}{19254717785941225337901202496072427927549983181027876611049175073692468859} a^{12} - \frac{6701554816939274887341387155355927276202367629179236607239562294803999821}{19254717785941225337901202496072427927549983181027876611049175073692468859} a^{11} - \frac{2045489237034548120021847062086971785979512794041631058635806227615405796}{19254717785941225337901202496072427927549983181027876611049175073692468859} a^{10} + \frac{9283715386308897715267028591812742291483733667074279445721688223260036073}{19254717785941225337901202496072427927549983181027876611049175073692468859} a^{9} - \frac{5503477074969141171862721270592061994300083304658343290154626004874270939}{19254717785941225337901202496072427927549983181027876611049175073692468859} a^{8} + \frac{8919561436547678407570733672868336175589651154263246907051279523142789124}{19254717785941225337901202496072427927549983181027876611049175073692468859} a^{7} - \frac{2492580042264674308830757158318649630930623770448494925484289384337662211}{19254717785941225337901202496072427927549983181027876611049175073692468859} a^{6} + \frac{5868993930176018615080293428725525272129019692948497114896872220633177461}{19254717785941225337901202496072427927549983181027876611049175073692468859} a^{5} - \frac{5083432160676658643938496970942577634813060078003743104133867163754942799}{19254717785941225337901202496072427927549983181027876611049175073692468859} a^{4} + \frac{7924511497010109431012531668745408392854682528547034758367460271208472672}{19254717785941225337901202496072427927549983181027876611049175073692468859} a^{3} - \frac{7641072442628437087364373235674054001604663472982181125017081978894550439}{19254717785941225337901202496072427927549983181027876611049175073692468859} a^{2} - \frac{7904923040495066851428401963133367280054715538406305705377424173158982719}{19254717785941225337901202496072427927549983181027876611049175073692468859} a + \frac{1386478544796141264722980657186920883836417972262524065943434216946516388}{19254717785941225337901202496072427927549983181027876611049175073692468859}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 258301252893000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 23514624 |
| The 132 conjugacy class representatives for t21n145 are not computed |
| Character table for t21n145 is not computed |
Intermediate fields
| 7.3.6431296.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{3}$ | $21$ | $21$ | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.18.2 | $x^{14} + 2 x^{10} + 2 x^{8} + 2 x^{7} + 2 x^{5} + 2$ | $14$ | $1$ | $18$ | 14T11 | $[12/7, 12/7, 12/7]_{7}^{3}$ | |
| $127$ | 127.3.2.3 | $x^{3} - 10287$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 127.9.0.1 | $x^{9} - x + 26$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
| 127.9.0.1 | $x^{9} - x + 26$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
| 317 | Data not computed | ||||||
| 1867 | Data not computed | ||||||
| 1005409 | Data not computed | ||||||