Normalized defining polynomial
\( x^{21} - 21 x^{19} - 16 x^{18} + 189 x^{17} + 288 x^{16} - 841 x^{15} - 2160 x^{14} + 1275 x^{13} + 8272 x^{12} + 4257 x^{11} - 15024 x^{10} - 22193 x^{9} + 3456 x^{8} + 32877 x^{7} + 27088 x^{6} - 4104 x^{5} - 23856 x^{4} - 20464 x^{3} - 8928 x^{2} - 2112 x - 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(9333296606842651868186378354688=2^{14}\cdot 3^{15}\cdot 71^{3}\cdot 173\cdot 8623^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 71, 173, 8623$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{5} + \frac{1}{8} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{8} a^{6} + \frac{1}{8} a^{4}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{12} - \frac{1}{8} a^{8} + \frac{1}{16} a^{4}$, $\frac{1}{16} a^{13} - \frac{1}{8} a^{7} - \frac{1}{16} a^{5} + \frac{1}{8} a^{3}$, $\frac{1}{16} a^{14} - \frac{1}{8} a^{8} - \frac{1}{16} a^{6} + \frac{1}{8} a^{4}$, $\frac{1}{32} a^{15} - \frac{1}{32} a^{13} - \frac{1}{16} a^{11} - \frac{1}{16} a^{9} - \frac{3}{32} a^{7} + \frac{3}{32} a^{5} + \frac{1}{8} a^{3}$, $\frac{1}{32} a^{16} - \frac{1}{32} a^{14} - \frac{1}{16} a^{10} + \frac{1}{32} a^{8} + \frac{3}{32} a^{6} - \frac{1}{16} a^{4}$, $\frac{1}{32} a^{17} - \frac{1}{32} a^{13} - \frac{1}{32} a^{9} + \frac{1}{32} a^{5}$, $\frac{1}{192} a^{18} - \frac{1}{96} a^{17} + \frac{5}{192} a^{14} + \frac{1}{96} a^{13} - \frac{1}{48} a^{12} - \frac{1}{24} a^{11} + \frac{1}{64} a^{10} + \frac{5}{96} a^{9} - \frac{1}{8} a^{8} + \frac{1}{24} a^{7} + \frac{23}{192} a^{6} - \frac{7}{32} a^{5} - \frac{1}{48} a^{4} - \frac{1}{6} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{192} a^{19} + \frac{1}{96} a^{17} - \frac{1}{192} a^{15} - \frac{1}{48} a^{12} - \frac{1}{192} a^{11} - \frac{1}{24} a^{10} + \frac{1}{96} a^{9} - \frac{1}{12} a^{8} + \frac{3}{64} a^{7} - \frac{1}{24} a^{6} - \frac{1}{48} a^{5} + \frac{5}{48} a^{4} - \frac{1}{24} a^{3} - \frac{1}{4} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{192} a^{20} - \frac{1}{96} a^{17} - \frac{1}{192} a^{16} + \frac{1}{96} a^{14} - \frac{1}{96} a^{13} - \frac{5}{192} a^{12} + \frac{1}{24} a^{11} - \frac{1}{48} a^{10} - \frac{1}{32} a^{9} + \frac{3}{64} a^{8} - \frac{7}{96} a^{6} - \frac{11}{96} a^{5} - \frac{3}{16} a^{4} - \frac{1}{24} a^{3} - \frac{5}{12} a^{2} - \frac{1}{6} a + \frac{1}{3}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19802837.2105 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1410877440 |
| The 429 conjugacy class representatives for t21n152 are not computed |
| Character table for t21n152 is not computed |
Intermediate fields
| 7.3.612233.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.9.0.1}{9} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.9.0.1}{9} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.9.0.1}{9} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.9.0.1}{9} }$ | $18{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.5 | $x^{14} + 2 x^{13} + x^{12} + 2 x^{11} - 2 x^{10} + 2 x^{8} + 4 x^{7} - 2 x^{6} + 4 x^{5} + 4 x^{4} + 2 x^{2} - 3$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2, 2]^{7}$ | |
| $3$ | 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.12.12.18 | $x^{12} + 42 x^{11} - 48 x^{10} - 114 x^{9} - 99 x^{8} - 54 x^{7} - 90 x^{6} - 108 x^{5} + 27 x^{4} - 27 x^{3} + 81 x^{2} + 81 x - 81$ | $3$ | $4$ | $12$ | 12T46 | $[3/2, 3/2]_{2}^{4}$ | |
| 71 | Data not computed | ||||||
| $173$ | $\Q_{173}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 173.2.1.2 | $x^{2} + 346$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 173.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 173.5.0.1 | $x^{5} - x + 48$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 173.5.0.1 | $x^{5} - x + 48$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 173.5.0.1 | $x^{5} - x + 48$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 8623 | Data not computed | ||||||