Normalized defining polynomial
\( x^{21} + 3 x^{19} - 14 x^{18} - 45 x^{17} + 12 x^{16} - 99 x^{15} + 522 x^{14} + 171 x^{13} + 272 x^{12} - 513 x^{11} - 954 x^{10} - 4555 x^{9} + 4032 x^{8} + 5343 x^{7} - 770 x^{6} - 4356 x^{5} - 1224 x^{4} - 880 x^{3} + 288 x^{2} + 576 x + 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(91178360615058506586326215629471744=2^{33}\cdot 3^{21}\cdot 317^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 317$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{14} - \frac{1}{2} a^{13} - \frac{1}{4} a^{12} + \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{15} + \frac{1}{4} a^{14} - \frac{1}{8} a^{13} - \frac{1}{2} a^{12} + \frac{1}{8} a^{11} + \frac{1}{4} a^{10} - \frac{1}{8} a^{9} + \frac{3}{8} a^{7} - \frac{1}{4} a^{6} + \frac{1}{8} a^{5} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{32} a^{18} - \frac{1}{16} a^{17} + \frac{3}{32} a^{16} - \frac{1}{8} a^{15} - \frac{1}{32} a^{14} - \frac{5}{16} a^{13} - \frac{11}{32} a^{12} + \frac{7}{32} a^{10} + \frac{5}{16} a^{9} + \frac{15}{32} a^{8} - \frac{1}{4} a^{7} - \frac{7}{32} a^{6} + \frac{3}{16} a^{5} + \frac{15}{32} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{64} a^{19} - \frac{1}{64} a^{17} + \frac{1}{32} a^{16} - \frac{9}{64} a^{15} - \frac{3}{16} a^{14} + \frac{1}{64} a^{13} - \frac{11}{32} a^{12} + \frac{7}{64} a^{11} - \frac{1}{8} a^{10} - \frac{29}{64} a^{9} + \frac{11}{32} a^{8} + \frac{9}{64} a^{7} + \frac{3}{8} a^{6} - \frac{5}{64} a^{5} - \frac{9}{32} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{557037726739259264353133834695368064} a^{20} - \frac{26463634097276674973873389061109}{8703714480300926005517716167115126} a^{19} - \frac{960439873337622816610564257905965}{557037726739259264353133834695368064} a^{18} - \frac{13418396030787364140962419539146283}{278518863369629632176566917347684032} a^{17} - \frac{51848459615833535196765076034581517}{557037726739259264353133834695368064} a^{16} + \frac{10209464151490258073273599907958629}{139259431684814816088283458673842016} a^{15} + \frac{238991679205616570215100489575653517}{557037726739259264353133834695368064} a^{14} + \frac{125824273953458209226687842351722441}{278518863369629632176566917347684032} a^{13} - \frac{276635707205036211448020627553944725}{557037726739259264353133834695368064} a^{12} - \frac{28205477214549855859867167909956047}{69629715842407408044141729336921008} a^{11} - \frac{123494467453733959854035292894587633}{557037726739259264353133834695368064} a^{10} + \frac{132889618986581846155760582389978215}{278518863369629632176566917347684032} a^{9} + \frac{180180779357507210619491790603452917}{557037726739259264353133834695368064} a^{8} - \frac{18323974115934445245759651688222555}{69629715842407408044141729336921008} a^{7} + \frac{170159152139263784065790034741873039}{557037726739259264353133834695368064} a^{6} - \frac{10620574925153988398730971811381445}{278518863369629632176566917347684032} a^{5} - \frac{32468450194399236271983494868217625}{139259431684814816088283458673842016} a^{4} + \frac{6887902130908964339769144943718827}{17407428960601852011035432334230252} a^{3} - \frac{5990125822833661962284527913919597}{34814857921203704022070864668460504} a^{2} - \frac{1509049189311006566178414146579727}{17407428960601852011035432334230252} a + \frac{1087605268730115224632354754888895}{8703714480300926005517716167115126}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5471497408.33 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 47029248 |
| The 228 conjugacy class representatives for t21n147 are not computed |
| Character table for t21n147 is not computed |
Intermediate fields
| 7.3.6431296.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | ${\href{/LocalNumberField/37.14.0.1}{14} }{,}\,{\href{/LocalNumberField/37.7.0.1}{7} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{3}$ | $21$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.14.27.142 | $x^{14} + 8 x^{13} - 4 x^{12} + 8 x^{11} + 4 x^{10} + 8 x^{9} - 2 x^{8} + 8 x^{7} - 6 x^{6} + 8 x^{5} + 4 x^{4} + 8 x^{3} - 6$ | $14$ | $1$ | $27$ | 14T44 | $[12/7, 12/7, 12/7, 18/7, 18/7, 18/7, 3]_{7}^{3}$ | |
| 3 | Data not computed | ||||||
| 317 | Data not computed | ||||||