Normalized defining polynomial
\( x^{21} + 14 x^{15} - 12 x^{14} - 196 x^{9} + 336 x^{8} - 144 x^{7} - 2058 x^{3} + 5292 x^{2} - 4536 x + 1296 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(903969847468650282241904664048085301439776739532210176=2^{36}\cdot 3^{22}\cdot 7^{22}\cdot 101^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $370.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{6} a^{18} + \frac{1}{3} a^{12} + \frac{1}{3} a^{6}$, $\frac{1}{279936} a^{19} + \frac{1111}{23328} a^{18} + \frac{529}{2592} a^{17} - \frac{17}{324} a^{16} - \frac{43}{216} a^{15} + \frac{1}{6} a^{14} + \frac{23335}{139968} a^{13} - \frac{7775}{23328} a^{12} + \frac{1111}{3888} a^{11} - \frac{119}{648} a^{10} - \frac{17}{108} a^{9} - \frac{5}{18} a^{8} + \frac{23279}{69984} a^{7} - \frac{1}{3} a^{6} - \frac{343}{46656} a + \frac{49}{7776}$, $\frac{1}{78364164096} a^{20} - \frac{6665}{13060694016} a^{19} + \frac{44422225}{2176782336} a^{18} - \frac{31731929}{362797056} a^{17} - \frac{17376863}{60466176} a^{16} + \frac{3909463}{10077696} a^{15} - \frac{16047027929}{39182082048} a^{14} - \frac{24955}{279936} a^{13} - \frac{3565}{46656} a^{12} - \frac{2731}{7776} a^{11} - \frac{205}{1296} a^{10} - \frac{91}{216} a^{9} - \frac{7074542641}{19591041024} a^{8} - \frac{543868985}{3265173504} a^{7} - \frac{343}{13060694016} a^{2} + \frac{1143121}{1088391168} a - \frac{326599}{362797056}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 50841293689700000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 384072192000 |
| The 475 conjugacy class representatives for t21n160 are not computed |
| Character table for t21n160 is not computed |
Intermediate fields
| 3.3.404.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | $15{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | $21$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $15{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.6.10.7 | $x^{6} + 3 x^{5} + 6$ | $6$ | $1$ | $10$ | $C_3^2:D_4$ | $[9/4, 9/4]_{4}^{2}$ | |
| 3.12.12.16 | $x^{12} + 24 x^{11} + 42 x^{10} - 39 x^{9} - 99 x^{8} + 18 x^{7} - 27 x^{6} - 54 x^{4} + 27 x^{3} - 81 x + 81$ | $3$ | $4$ | $12$ | 12T170 | $[3/2, 3/2, 3/2, 3/2]_{2}^{4}$ | |
| 7 | Data not computed | ||||||
| $101$ | 101.7.0.1 | $x^{7} - x + 11$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 101.14.7.1 | $x^{14} - 2060602 x^{8} + 1061520150601 x^{2} - 12972837760494821$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |