Normalized defining polynomial
\( x^{21} + 6 x^{19} - 16 x^{18} - 36 x^{17} - 144 x^{16} - 390 x^{15} - 270 x^{14} - 2019 x^{13} - 784 x^{12} - 9594 x^{11} - 2886 x^{10} - 15678 x^{9} + 10368 x^{8} + 15135 x^{7} + 33164 x^{6} + 52632 x^{5} + 28944 x^{4} + 22256 x^{3} + 12096 x^{2} + 5376 x + 896 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8701446204588103256973312430845198336=2^{21}\cdot 3^{21}\cdot 7^{2}\cdot 13^{6}\cdot 109^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{17} - \frac{1}{4} a^{15} - \frac{1}{2} a^{13} + \frac{1}{4} a^{11} + \frac{1}{4} a^{10} - \frac{3}{8} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{8} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{18} - \frac{1}{8} a^{16} - \frac{1}{4} a^{14} - \frac{3}{8} a^{12} + \frac{1}{8} a^{11} - \frac{3}{16} a^{10} - \frac{1}{8} a^{8} - \frac{3}{8} a^{7} + \frac{1}{8} a^{6} - \frac{1}{16} a^{4} - \frac{1}{4} a^{3}$, $\frac{1}{32} a^{19} - \frac{1}{16} a^{17} - \frac{1}{8} a^{15} - \frac{1}{2} a^{14} - \frac{3}{16} a^{13} - \frac{7}{16} a^{12} + \frac{13}{32} a^{11} - \frac{1}{16} a^{9} + \frac{5}{16} a^{8} + \frac{1}{16} a^{7} - \frac{1}{2} a^{6} + \frac{15}{32} a^{5} + \frac{3}{8} a^{4}$, $\frac{1}{403247640105416446693081703742172850179124032} a^{20} + \frac{591817828885166951985113234016284575491491}{100811910026354111673270425935543212544781008} a^{19} - \frac{2439387116438416472186306861172552789357445}{201623820052708223346540851871086425089562016} a^{18} + \frac{976399268342503665482294694285180212039899}{25202977506588527918317606483885803136195252} a^{17} - \frac{12262391454341082820992029943978745065028441}{100811910026354111673270425935543212544781008} a^{16} + \frac{4448460666357099060529882489955163333176959}{25202977506588527918317606483885803136195252} a^{15} + \frac{41009765272187490050772555438027425311656029}{201623820052708223346540851871086425089562016} a^{14} + \frac{70636042850185514890749893491688240727617125}{201623820052708223346540851871086425089562016} a^{13} - \frac{70830883896659705186409015012545630490045803}{403247640105416446693081703742172850179124032} a^{12} - \frac{35314369387728529287945479500630548438591097}{100811910026354111673270425935543212544781008} a^{11} - \frac{59801293508299636345131792305681922571196909}{201623820052708223346540851871086425089562016} a^{10} + \frac{61037120128995180177881475621462637016194413}{201623820052708223346540851871086425089562016} a^{9} + \frac{28164157084254866995533768039759464758557597}{201623820052708223346540851871086425089562016} a^{8} - \frac{19826512934982290792175904183209959562903035}{50405955013177055836635212967771606272390504} a^{7} + \frac{75204498382673931217207166556903326096775343}{403247640105416446693081703742172850179124032} a^{6} - \frac{8777682081502011904521211192986697485694709}{25202977506588527918317606483885803136195252} a^{5} - \frac{17373387095300775745692857146228038698959193}{50405955013177055836635212967771606272390504} a^{4} + \frac{24600421403350724560115422805224146091199287}{50405955013177055836635212967771606272390504} a^{3} + \frac{11057847372813350091707325365048146642357187}{25202977506588527918317606483885803136195252} a^{2} - \frac{5548288903833601591006962862515947081566503}{12601488753294263959158803241942901568097626} a - \frac{906107845136511919049407266551571015835725}{6300744376647131979579401620971450784048813}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15001188795.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5878656 |
| The 120 conjugacy class representatives for t21n136 are not computed |
| Character table for t21n136 is not computed |
Intermediate fields
| 7.3.2007889.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.21.17 | $x^{14} + 4 x^{13} + 4 x^{11} - 3 x^{10} + 4 x^{9} + 2 x^{7} - x^{6} - 2 x^{5} + 4 x^{4} + 2 x^{3} + 3 x^{2} - 2 x + 3$ | $2$ | $7$ | $21$ | 14T9 | $[2, 2, 2, 3]^{7}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 7.9.0.1 | $x^{9} + x^{2} - 6 x + 2$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $109$ | $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.12.6.1 | $x^{12} + 28490638 x^{6} - 15386239549 x^{2} + 202929113411761$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |