Normalized defining polynomial
\( x^{21} + 21 x^{19} - 14 x^{18} + 162 x^{17} - 216 x^{16} + 585 x^{15} - 1026 x^{14} + 846 x^{13} - 584 x^{12} - 1755 x^{11} + 7098 x^{10} - 11146 x^{9} + 12312 x^{8} - 9693 x^{7} - 1278 x^{6} + 16092 x^{5} - 21528 x^{4} + 14992 x^{3} - 6048 x^{2} + 1344 x - 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(77818760793281506950152320930430976=2^{14}\cdot 3^{21}\cdot 37\cdot 107^{3}\cdot 21557^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37, 107, 21557$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} + \frac{1}{8} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} + \frac{1}{8} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{3}{8} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{64} a^{16} - \frac{1}{32} a^{15} - \frac{15}{64} a^{14} + \frac{1}{4} a^{13} - \frac{11}{32} a^{12} + \frac{1}{16} a^{11} - \frac{31}{64} a^{10} + \frac{7}{16} a^{9} + \frac{7}{32} a^{8} - \frac{5}{16} a^{7} + \frac{13}{64} a^{6} + \frac{7}{32} a^{4} - \frac{5}{16} a^{3} + \frac{11}{64} a^{2} + \frac{3}{16} a - \frac{5}{16}$, $\frac{1}{512} a^{17} - \frac{19}{512} a^{15} - \frac{103}{256} a^{14} + \frac{101}{256} a^{13} - \frac{13}{64} a^{12} + \frac{169}{512} a^{11} + \frac{15}{256} a^{10} + \frac{99}{256} a^{9} + \frac{25}{64} a^{8} + \frac{101}{512} a^{7} - \frac{51}{256} a^{6} - \frac{25}{256} a^{5} - \frac{7}{64} a^{4} + \frac{99}{512} a^{3} + \frac{17}{256} a^{2} + \frac{1}{128} a - \frac{5}{64}$, $\frac{1}{4096} a^{18} + \frac{1}{2048} a^{17} - \frac{19}{4096} a^{16} - \frac{61}{1024} a^{15} + \frac{151}{2048} a^{14} + \frac{203}{1024} a^{13} + \frac{2009}{4096} a^{12} + \frac{87}{256} a^{11} - \frac{639}{2048} a^{10} + \frac{277}{1024} a^{9} + \frac{2037}{4096} a^{8} + \frac{281}{1024} a^{7} - \frac{383}{2048} a^{6} - \frac{167}{1024} a^{5} - \frac{13}{4096} a^{4} + \frac{157}{512} a^{3} - \frac{183}{512} a^{2} - \frac{17}{128} a + \frac{59}{256}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} - \frac{31}{32768} a^{17} - \frac{65}{16384} a^{16} + \frac{883}{16384} a^{15} + \frac{1411}{4096} a^{14} - \frac{6959}{32768} a^{13} - \frac{5331}{16384} a^{12} + \frac{1329}{16384} a^{11} + \frac{1609}{4096} a^{10} + \frac{3581}{32768} a^{9} + \frac{595}{16384} a^{8} - \frac{3755}{16384} a^{7} - \frac{21}{4096} a^{6} - \frac{8293}{32768} a^{5} + \frac{4763}{16384} a^{4} - \frac{101}{4096} a^{3} - \frac{253}{2048} a^{2} + \frac{7}{2048} a + \frac{79}{1024}$, $\frac{1}{262144} a^{20} - \frac{1}{131072} a^{19} + \frac{25}{262144} a^{18} - \frac{1}{4096} a^{17} + \frac{145}{131072} a^{16} - \frac{199}{65536} a^{15} + \frac{2177}{262144} a^{14} - \frac{1345}{65536} a^{13} + \frac{5803}{131072} a^{12} - \frac{5949}{65536} a^{11} + \frac{45837}{262144} a^{10} - \frac{2643}{8192} a^{9} - \frac{52069}{131072} a^{8} - \frac{10389}{65536} a^{7} + \frac{73419}{262144} a^{6} + \frac{28507}{65536} a^{5} + \frac{12545}{65536} a^{4} - \frac{3809}{8192} a^{3} - \frac{211}{16384} a^{2} + \frac{11}{4096} a - \frac{1}{4096}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1439410720.51 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1410877440 |
| The 429 conjugacy class representatives for t21n152 are not computed |
| Character table for t21n152 is not computed |
Intermediate fields
| 7.5.2306599.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.36 | $x^{14} - x^{12} + 2 x^{10} + 2 x^{9} + 2 x^{7} + 2 x^{6} + 2 x^{5} + 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | 14T21 | $[2, 2, 2, 2, 2, 2]^{7}$ | |
| $3$ | 3.9.9.2 | $x^{9} + 18 x^{3} + 27 x + 27$ | $3$ | $3$ | $9$ | $C_3^2 : S_3 $ | $[3/2, 3/2]_{2}^{3}$ |
| 3.12.12.21 | $x^{12} + 12 x^{11} + 108 x^{10} + 108 x^{9} - 72 x^{8} - 99 x^{7} - 72 x^{6} - 108 x^{5} - 27 x^{4} + 108 x^{3} + 81 x + 81$ | $3$ | $4$ | $12$ | 12T173 | $[3/2, 3/2, 3/2, 3/2]_{2}^{4}$ | |
| 37 | Data not computed | ||||||
| 107 | Data not computed | ||||||
| 21557 | Data not computed | ||||||