Normalized defining polynomial
\( x^{21} - 21 x^{15} - 18 x^{14} - 1176 x^{9} - 2016 x^{8} - 864 x^{7} - 343 x^{3} - 882 x^{2} - 756 x - 216 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7325591165663336053947172202947791814656=2^{18}\cdot 3^{35}\cdot 7^{21}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} - \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{4}$, $\frac{1}{9} a^{11} + \frac{1}{9} a^{9} + \frac{1}{9} a^{7} - \frac{1}{9} a^{5} + \frac{1}{3} a^{4} - \frac{1}{9} a^{3} + \frac{1}{3} a^{2} - \frac{1}{9} a + \frac{1}{3}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{10} + \frac{1}{9} a^{8} - \frac{1}{9} a^{6} + \frac{1}{3} a^{5} - \frac{1}{9} a^{4} + \frac{1}{3} a^{3} - \frac{1}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{7} + \frac{1}{3} a^{6} - \frac{2}{9} a - \frac{1}{3}$, $\frac{1}{27} a^{14} + \frac{1}{27} a^{13} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{2}{27} a^{8} - \frac{2}{27} a^{7} + \frac{4}{9} a^{6} + \frac{1}{3} a^{5} + \frac{2}{9} a^{4} - \frac{2}{9} a^{3} + \frac{1}{27} a^{2} + \frac{10}{27} a - \frac{4}{9}$, $\frac{1}{27} a^{15} - \frac{1}{27} a^{13} + \frac{1}{9} a^{10} - \frac{2}{27} a^{9} + \frac{2}{27} a^{7} - \frac{1}{9} a^{6} - \frac{1}{9} a^{4} + \frac{10}{27} a^{3} - \frac{10}{27} a + \frac{1}{9}$, $\frac{1}{27} a^{16} + \frac{1}{27} a^{13} + \frac{1}{27} a^{10} + \frac{1}{9} a^{9} + \frac{1}{27} a^{7} + \frac{4}{9} a^{6} + \frac{1}{3} a^{5} + \frac{7}{27} a^{4} - \frac{4}{9} a^{3} + \frac{1}{3} a^{2} + \frac{7}{27} a + \frac{2}{9}$, $\frac{1}{27} a^{17} - \frac{1}{27} a^{13} + \frac{1}{27} a^{11} + \frac{1}{9} a^{9} + \frac{1}{9} a^{8} - \frac{4}{27} a^{7} - \frac{1}{9} a^{6} - \frac{2}{27} a^{5} + \frac{1}{3} a^{4} - \frac{4}{9} a^{3} + \frac{2}{9} a^{2} - \frac{13}{27} a + \frac{4}{9}$, $\frac{1}{27} a^{18} + \frac{1}{27} a^{13} + \frac{1}{27} a^{12} - \frac{1}{9} a^{10} + \frac{1}{9} a^{8} + \frac{4}{27} a^{7} + \frac{10}{27} a^{6} - \frac{1}{3} a^{5} + \frac{1}{9} a^{4} + \frac{2}{9} a^{2} + \frac{13}{27} a - \frac{4}{9}$, $\frac{1}{839808} a^{19} - \frac{1111}{69984} a^{18} - \frac{47}{7776} a^{17} + \frac{17}{972} a^{16} + \frac{5}{648} a^{15} - \frac{1}{54} a^{14} - \frac{5191}{279936} a^{13} + \frac{1}{46656} a^{12} + \frac{41}{7776} a^{11} - \frac{191}{1296} a^{10} + \frac{11}{72} a^{9} - \frac{17}{108} a^{8} - \frac{697}{34992} a^{7} + \frac{2}{9} a^{6} + \frac{7}{27} a^{5} - \frac{1}{9} a^{4} - \frac{13}{27} a^{3} + \frac{4}{27} a^{2} - \frac{342487}{839808} a - \frac{62257}{139968}$, $\frac{1}{705277476864} a^{20} + \frac{53321}{117546246144} a^{19} - \frac{59247407}{19591041024} a^{18} - \frac{15157351}{3265173504} a^{17} + \frac{5951137}{544195584} a^{16} + \frac{802793}{90699264} a^{15} + \frac{2362675385}{235092492288} a^{14} - \frac{115039}{2519424} a^{13} - \frac{5783}{419904} a^{12} - \frac{655}{69984} a^{11} + \frac{1081}{11664} a^{10} + \frac{113}{1944} a^{9} + \frac{1179090383}{29386561536} a^{8} + \frac{632282105}{4897760256} a^{7} - \frac{13}{27} a^{6} - \frac{1}{27} a^{5} - \frac{8}{27} a^{4} - \frac{4}{27} a^{3} + \frac{52242775721}{705277476864} a^{2} + \frac{15228331727}{58773123072} a - \frac{4356177415}{19591041024}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2604814902030 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 384072192000 |
| The 1165 conjugacy class representatives for t21n159 are not computed |
| Character table for t21n159 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | $18{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.9.0.1}{9} }$ | ${\href{/LocalNumberField/17.5.0.1}{5} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $15{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ | $15{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }$ | $18{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{5}$ | $21$ | ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | $21$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | $15{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.6.2 | $x^{6} - x^{4} - 5$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2]^{6}$ | |
| 2.12.12.11 | $x^{12} - 6 x^{10} - 73 x^{8} + 140 x^{6} + 79 x^{4} - 6 x^{2} + 57$ | $2$ | $6$ | $12$ | $A_4 \times C_2$ | $[2, 2]^{6}$ | |
| $3$ | 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.6.9.3 | $x^{6} + 3 x^{4} + 24$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| 3.9.18.21 | $x^{9} + 6 x^{6} + 18 x^{2} + 9 x + 3$ | $9$ | $1$ | $18$ | $C_3 \wr C_3 $ | $[2, 2, 7/3]^{3}$ | |
| 7 | Data not computed | ||||||