Normalized defining polynomial
\( x^{21} - 4 x^{18} - 36 x^{17} + 12 x^{16} - 32 x^{15} + 198 x^{14} - 45 x^{13} + 328 x^{12} - 1395 x^{11} - 120 x^{10} - 551 x^{9} + 3384 x^{8} + 135 x^{7} + 868 x^{6} - 5328 x^{5} - 2856 x^{4} + 1248 x^{3} + 1152 x^{2} - 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(52420739808321057540061613491273728=2^{14}\cdot 3^{21}\cdot 23^{4}\cdot 239^{3}\cdot 431^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23, 239, 431$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{17} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{4} a^{10} + \frac{3}{8} a^{9} - \frac{3}{8} a^{7} + \frac{1}{8} a^{5} - \frac{1}{8} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{18} - \frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} + \frac{3}{8} a^{11} + \frac{3}{16} a^{10} - \frac{1}{2} a^{9} - \frac{3}{16} a^{8} - \frac{1}{2} a^{7} - \frac{7}{16} a^{6} - \frac{1}{2} a^{5} + \frac{7}{16} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{32} a^{19} - \frac{1}{8} a^{16} - \frac{1}{8} a^{15} + \frac{3}{8} a^{14} + \frac{3}{16} a^{12} - \frac{13}{32} a^{11} + \frac{1}{4} a^{10} + \frac{13}{32} a^{9} + \frac{1}{4} a^{8} - \frac{7}{32} a^{7} - \frac{1}{4} a^{6} + \frac{7}{32} a^{5} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{18554873563446233268992883259358528} a^{20} + \frac{110919330107635285674155244834115}{9277436781723116634496441629679264} a^{19} + \frac{44166447693568096489974077740701}{2319359195430779158624110407419816} a^{18} - \frac{266463231178674116661611961727777}{4638718390861558317248220814839632} a^{17} - \frac{221280863431224007867789083228175}{4638718390861558317248220814839632} a^{16} - \frac{241873375701765474603920861326323}{4638718390861558317248220814839632} a^{15} + \frac{344697172874366604198154289244009}{2319359195430779158624110407419816} a^{14} + \frac{955920555487597520142036864836467}{9277436781723116634496441629679264} a^{13} + \frac{7047638919511017251598283430995447}{18554873563446233268992883259358528} a^{12} - \frac{4429784655822935136471849964019787}{9277436781723116634496441629679264} a^{11} + \frac{5145593389862432824186499725550773}{18554873563446233268992883259358528} a^{10} - \frac{4002020702352638935854519881411061}{9277436781723116634496441629679264} a^{9} + \frac{1652326957857673047979283798499921}{18554873563446233268992883259358528} a^{8} - \frac{542344773056311350503345423669481}{9277436781723116634496441629679264} a^{7} + \frac{1643652153786115157558810361563391}{18554873563446233268992883259358528} a^{6} + \frac{2606249144422489118623714248040055}{9277436781723116634496441629679264} a^{5} + \frac{161283347390421541123438104974871}{579839798857694789656027601854954} a^{4} + \frac{191004139607739255411254585549295}{2319359195430779158624110407419816} a^{3} + \frac{327859871115381600960193978409619}{1159679597715389579312055203709908} a^{2} + \frac{456825095698996920044650365211}{579839798857694789656027601854954} a - \frac{105382259711213517933244395734957}{289919899428847394828013800927477}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1065397003.93 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1410877440 |
| The 429 conjugacy class representatives for t21n152 are not computed |
| Character table for t21n152 is not computed |
Intermediate fields
| 7.5.2369207.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $15{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | $18{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.9.0.1}{9} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.1 | $x^{14} + 3 x^{12} - 2 x^{11} - 2 x^{10} + 4 x^{9} + 2 x^{7} + 2 x^{5} + 2 x^{4} - 2 x^{3} + 2 x^{2} + 4 x - 3$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 23.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 23.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 239 | Data not computed | ||||||
| 431 | Data not computed | ||||||