Normalized defining polynomial
\( x^{21} + 168 x^{15} - 144 x^{14} - 1176 x^{9} + 2016 x^{8} - 864 x^{7} - 9604 x^{3} + 24696 x^{2} - 21168 x + 6048 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(46733779666658912130977835785983849692699562082304=2^{22}\cdot 3^{30}\cdot 7^{34}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $231.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} - \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{6} a^{9} + \frac{1}{3} a^{3}$, $\frac{1}{6} a^{10} + \frac{1}{3} a^{4}$, $\frac{1}{18} a^{11} + \frac{1}{18} a^{9} - \frac{1}{9} a^{7} + \frac{4}{9} a^{5} + \frac{1}{3} a^{4} + \frac{4}{9} a^{3} + \frac{1}{3} a^{2} + \frac{1}{9} a + \frac{1}{3}$, $\frac{1}{36} a^{12} - \frac{1}{18} a^{10} + \frac{1}{9} a^{8} - \frac{1}{6} a^{7} + \frac{2}{9} a^{6} - \frac{1}{3} a^{5} - \frac{4}{9} a^{4} + \frac{1}{6} a^{3} - \frac{1}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{36} a^{13} - \frac{1}{6} a^{8} + \frac{1}{9} a^{7} - \frac{1}{3} a^{6} - \frac{1}{2} a^{4} - \frac{1}{3} a^{2} + \frac{1}{9} a + \frac{1}{3}$, $\frac{1}{36} a^{14} + \frac{1}{9} a^{8} - \frac{1}{2} a^{5} + \frac{1}{9} a^{2}$, $\frac{1}{108} a^{15} - \frac{1}{108} a^{13} + \frac{1}{18} a^{10} - \frac{1}{54} a^{9} - \frac{1}{6} a^{8} - \frac{4}{27} a^{7} + \frac{5}{18} a^{6} - \frac{1}{18} a^{4} - \frac{11}{27} a^{3} - \frac{1}{3} a^{2} + \frac{2}{27} a + \frac{2}{9}$, $\frac{1}{108} a^{16} - \frac{1}{108} a^{14} - \frac{1}{54} a^{10} - \frac{1}{18} a^{9} - \frac{4}{27} a^{8} + \frac{1}{18} a^{7} - \frac{1}{2} a^{5} + \frac{7}{27} a^{4} - \frac{4}{9} a^{3} - \frac{7}{27} a^{2} + \frac{4}{9} a - \frac{1}{3}$, $\frac{1}{108} a^{17} - \frac{1}{108} a^{13} - \frac{1}{54} a^{11} - \frac{1}{9} a^{8} - \frac{4}{27} a^{7} - \frac{2}{9} a^{6} + \frac{7}{27} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3} + \frac{1}{9} a^{2} - \frac{7}{27} a + \frac{2}{9}$, $\frac{1}{108} a^{18} - \frac{1}{108} a^{14} + \frac{1}{108} a^{12} - \frac{1}{18} a^{10} + \frac{1}{18} a^{9} - \frac{1}{27} a^{8} - \frac{1}{18} a^{7} + \frac{13}{27} a^{6} + \frac{1}{6} a^{5} + \frac{2}{9} a^{4} - \frac{7}{18} a^{3} - \frac{10}{27} a^{2} + \frac{2}{9} a$, $\frac{1}{1679616} a^{19} - \frac{185}{139968} a^{18} - \frac{47}{15552} a^{17} + \frac{1}{1944} a^{16} + \frac{5}{1296} a^{15} + \frac{7}{69984} a^{13} - \frac{107}{11664} a^{12} - \frac{41}{1944} a^{11} + \frac{1}{324} a^{10} - \frac{1}{18} a^{8} - \frac{49}{69984} a^{7} + \frac{8}{27} a^{6} + \frac{25}{54} a^{5} + \frac{11}{54} a^{4} - \frac{1}{54} a^{3} + \frac{4}{9} a^{2} + \frac{184223}{419904} a + \frac{343}{69984}$, $\frac{1}{705277476864} a^{20} + \frac{16663}{117546246144} a^{19} - \frac{85141487}{19591041024} a^{18} + \frac{5289607}{3265173504} a^{17} + \frac{1192225}{544195584} a^{16} + \frac{386935}{90699264} a^{15} + \frac{23236639}{29386561536} a^{14} - \frac{1565}{2519424} a^{13} - \frac{4667}{419904} a^{12} + \frac{1555}{69984} a^{11} - \frac{827}{11664} a^{10} - \frac{41}{1944} a^{9} + \frac{90699215}{29386561536} a^{8} - \frac{454312793}{4897760256} a^{7} + \frac{11}{54} a^{6} + \frac{13}{27} a^{4} - \frac{4}{9} a^{3} + \frac{45712426655}{176319369216} a^{2} - \frac{3285176921}{14693280768} a - \frac{538480273}{4897760256}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 584051430826000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 384072192000 |
| The 472 conjugacy class representatives for t21n161 are not computed |
| Character table for t21n161 is not computed |
Intermediate fields
| 3.3.756.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $15{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | $21$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $15{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | $21$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $15{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.3.3.1 | $x^{3} + 6 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $[3/2]_{2}$ |
| 3.9.15.12 | $x^{9} + 3 x^{8} + 3 x^{7} + 6 x^{3} + 6$ | $9$ | $1$ | $15$ | $S_3\times C_3$ | $[3/2, 2]_{2}$ | |
| 3.9.12.23 | $x^{9} + 6 x^{4} + 3 x^{3} + 3$ | $9$ | $1$ | $12$ | $C_3^2 : C_6$ | $[3/2, 3/2]_{2}^{3}$ | |
| 7 | Data not computed | ||||||