Normalized defining polynomial
\( x^{21} - 10 x^{20} - 103 x^{19} + 1448 x^{18} + 2152 x^{17} - 83871 x^{16} + 149173 x^{15} + 2385250 x^{14} - 9948420 x^{13} - 29032971 x^{12} + 247870758 x^{11} - 109823779 x^{10} - 2879373801 x^{9} + 7247306792 x^{8} + 9672661015 x^{7} - 71078825238 x^{6} + 89876215729 x^{5} + 141470849513 x^{4} - 604358702025 x^{3} + 843239380035 x^{2} - 569139139934 x + 156657136133 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(45907693464999604842301273030242456313152526209=3^{2}\cdot 73^{2}\cdot 1249^{2}\cdot 2741^{6}\cdot 3877^{2}\cdot 9811^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $166.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 73, 1249, 2741, 3877, 9811$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{2277815431894252076707394128082158198494390451258616248825947135577499} a^{20} - \frac{517574885870336685832924869266464200470099331298056251749682852466329}{2277815431894252076707394128082158198494390451258616248825947135577499} a^{19} - \frac{704839701048978530546224075726560637897070897785589198143981048883187}{2277815431894252076707394128082158198494390451258616248825947135577499} a^{18} - \frac{213365967909398814356835193754965938010020617126350391780964508386414}{2277815431894252076707394128082158198494390451258616248825947135577499} a^{17} - \frac{1032805127751097890611835404020274188539879799539608495605636494364222}{2277815431894252076707394128082158198494390451258616248825947135577499} a^{16} + \frac{727721018855563696331852474059151921705386123322824972742070971428695}{2277815431894252076707394128082158198494390451258616248825947135577499} a^{15} + \frac{199565845108968015226134863884028675780147026486216672629052500877652}{2277815431894252076707394128082158198494390451258616248825947135577499} a^{14} + \frac{349718679187150827153202271058627658286433743746626873528603791553854}{2277815431894252076707394128082158198494390451258616248825947135577499} a^{13} + \frac{885202500122015805211139364120964029834265210194998165541901847714618}{2277815431894252076707394128082158198494390451258616248825947135577499} a^{12} - \frac{230453944375321295060540160196195333628052253146094787303253491835939}{2277815431894252076707394128082158198494390451258616248825947135577499} a^{11} - \frac{391332937920525926429972389196082608839349525547554568871935330149781}{2277815431894252076707394128082158198494390451258616248825947135577499} a^{10} + \frac{703938371765976936387285841740047287189056889257383686287804187985280}{2277815431894252076707394128082158198494390451258616248825947135577499} a^{9} + \frac{525666090347721877102953468864496827522144570640602090138902446919553}{2277815431894252076707394128082158198494390451258616248825947135577499} a^{8} + \frac{542214604771725443123534799688371283031614447063917149980167329730885}{2277815431894252076707394128082158198494390451258616248825947135577499} a^{7} - \frac{837351448559672312400281835003697204483308054675271519713810969648985}{2277815431894252076707394128082158198494390451258616248825947135577499} a^{6} + \frac{373027208005614273188276758656263813582511903190338925561367441423828}{2277815431894252076707394128082158198494390451258616248825947135577499} a^{5} + \frac{1029663796245054620393330549709604437947015012025888022577206689795248}{2277815431894252076707394128082158198494390451258616248825947135577499} a^{4} - \frac{871127445701726709128740151181427033445407450643731884641772609482891}{2277815431894252076707394128082158198494390451258616248825947135577499} a^{3} - \frac{328398957189220609447806081260523083272862910682394860545566800844229}{2277815431894252076707394128082158198494390451258616248825947135577499} a^{2} + \frac{740579597648643509970184648139398655666289367920080163301953520578769}{2277815431894252076707394128082158198494390451258616248825947135577499} a + \frac{151832584215172872324173080155816496289596480093103286711607302127011}{2277815431894252076707394128082158198494390451258616248825947135577499}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 830894950455000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 23514624 |
| The 132 conjugacy class representatives for t21n145 are not computed |
| Character table for t21n145 is not computed |
Intermediate fields
| 7.3.7513081.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | R | $21$ | ${\href{/LocalNumberField/7.9.0.1}{9} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $73$ | $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.3.2.3 | $x^{3} - 1825$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 1249 | Data not computed | ||||||
| 2741 | Data not computed | ||||||
| 3877 | Data not computed | ||||||
| 9811 | Data not computed | ||||||