Normalized defining polynomial
\( x^{21} + 18 x^{19} - 72 x^{18} + 33 x^{17} - 1080 x^{16} - 1098 x^{15} - 6357 x^{14} - 5688 x^{13} + 745 x^{12} - 3288 x^{11} - 9459 x^{10} - 59991 x^{9} - 82185 x^{8} - 50031 x^{7} + 2277 x^{6} + 5016 x^{5} + 693 x^{4} + 235 x^{3} - 24 x^{2} - 9 x - 3 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(44638629831273548205675162811445428224=2^{14}\cdot 3^{34}\cdot 73^{6}\cdot 1039^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 73, 1039$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{5}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{6}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{7}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{8}$, $\frac{1}{9} a^{18} + \frac{1}{9} a^{15} + \frac{1}{9} a^{12} + \frac{1}{3} a^{11} + \frac{2}{9} a^{9} - \frac{4}{9} a^{6} - \frac{4}{9} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{9} a^{19} + \frac{1}{9} a^{16} + \frac{1}{9} a^{13} + \frac{2}{9} a^{10} - \frac{4}{9} a^{7} - \frac{4}{9} a^{4} + \frac{1}{3} a$, $\frac{1}{2208084967505064234775279496577771344795342757} a^{20} + \frac{27838977089138322832565527710900958801353574}{2208084967505064234775279496577771344795342757} a^{19} + \frac{13599121368487692295808875272857773755780580}{736028322501688078258426498859257114931780919} a^{18} + \frac{207607324897823250270237268255329973582373035}{2208084967505064234775279496577771344795342757} a^{17} - \frac{252423056297818894636775088440170530293945552}{2208084967505064234775279496577771344795342757} a^{16} + \frac{198427362410247257721067485060244206327758}{736028322501688078258426498859257114931780919} a^{15} - \frac{316958173394801637740178426038593902149866316}{2208084967505064234775279496577771344795342757} a^{14} + \frac{15069033439567105231857354509287513066162273}{2208084967505064234775279496577771344795342757} a^{13} - \frac{95787034994261922206680429560222019830257555}{736028322501688078258426498859257114931780919} a^{12} + \frac{1088170768504673403809716032272653881417534155}{2208084967505064234775279496577771344795342757} a^{11} + \frac{789671874993814553128760918697630946429639199}{2208084967505064234775279496577771344795342757} a^{10} - \frac{90267887875486715843507918275663794513331075}{736028322501688078258426498859257114931780919} a^{9} - \frac{495988019132475428113212480821960927215884220}{2208084967505064234775279496577771344795342757} a^{8} + \frac{382165297616397465755195650403251027438765190}{2208084967505064234775279496577771344795342757} a^{7} - \frac{92195084467306384694517327551114049342664898}{736028322501688078258426498859257114931780919} a^{6} + \frac{111546311970247609384388076684436352550837614}{2208084967505064234775279496577771344795342757} a^{5} - \frac{977853403833454538984868285624351326367466312}{2208084967505064234775279496577771344795342757} a^{4} - \frac{195860252387642118961837884472213715662057204}{736028322501688078258426498859257114931780919} a^{3} - \frac{241462518757094340191415581475895055552206754}{736028322501688078258426498859257114931780919} a^{2} + \frac{78199837431626965100339711386283431798045633}{736028322501688078258426498859257114931780919} a - \frac{112654737193505848850425513967366678477925960}{245342774167229359419475499619752371643926973}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 56856654321.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 352719360 |
| The 150 conjugacy class representatives for t21n148 are not computed |
| Character table for t21n148 is not computed |
Intermediate fields
| 7.3.3884841.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{3}$ | $21$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | $21$ | $15{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.34 | $x^{14} - x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{7} + 2 x^{4} + 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | 14T21 | $[2, 2, 2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| $73$ | $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.3.0.1 | $x^{3} - x + 14$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 73.3.2.2 | $x^{3} + 365$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 73.3.2.2 | $x^{3} + 365$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 73.3.2.2 | $x^{3} + 365$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 73.6.0.1 | $x^{6} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 1039 | Data not computed | ||||||