Normalized defining polynomial
\( x^{21} - 6 x^{20} - 32 x^{19} + 220 x^{18} - 71 x^{17} - 902 x^{16} + 5320 x^{15} - 32524 x^{14} + 54335 x^{13} + 52730 x^{12} - 451160 x^{11} + 2325392 x^{10} - 6659517 x^{9} + 11243466 x^{8} - 15644640 x^{7} + 4239088 x^{6} + 54407188 x^{5} - 141705136 x^{4} + 265754960 x^{3} - 413258960 x^{2} + 333108324 x - 162458072 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(38225159209415003799521096455077448244002816=2^{36}\cdot 11^{19}\cdot 71^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $118.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{19} - \frac{1}{4} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7}$, $\frac{1}{912513653473656343486771612236835316881016661930564432537440127863044616} a^{20} - \frac{49537078659084543533730326498691300139451762407201688718594504798682521}{456256826736828171743385806118417658440508330965282216268720063931522308} a^{19} - \frac{3764102016710297291601255198624197191376591867652028419177247271027531}{114064206684207042935846451529604414610127082741320554067180015982880577} a^{18} - \frac{11609676498197244108345302413179135587756036394932477871501030730868024}{114064206684207042935846451529604414610127082741320554067180015982880577} a^{17} - \frac{84286361725860263659306269359515168480717570050472508811821382152899273}{912513653473656343486771612236835316881016661930564432537440127863044616} a^{16} - \frac{48860880286196999830462911156304171586150771652914092046162080977121489}{456256826736828171743385806118417658440508330965282216268720063931522308} a^{15} - \frac{7916926546922285700802275857358350588890025291855943542219708572149845}{114064206684207042935846451529604414610127082741320554067180015982880577} a^{14} + \frac{22824922224302722920773129778867150829039004457804056158088862604340455}{456256826736828171743385806118417658440508330965282216268720063931522308} a^{13} - \frac{199935680930845531773181832665989783140954579262566806437903329727858583}{912513653473656343486771612236835316881016661930564432537440127863044616} a^{12} - \frac{4857083052821038111293105175858487430443885653789516181298583758697425}{456256826736828171743385806118417658440508330965282216268720063931522308} a^{11} + \frac{24818835600546850228682634310473618530122798891944054525482918409588741}{114064206684207042935846451529604414610127082741320554067180015982880577} a^{10} + \frac{12932979600023984232822931300449774772024639010043489347612617196779179}{228128413368414085871692903059208829220254165482641108134360031965761154} a^{9} + \frac{132916211058994940742001267296746382067495894592513978224653301878688649}{912513653473656343486771612236835316881016661930564432537440127863044616} a^{8} - \frac{87241985736551296917297824017502981098991613956315604480712394197254893}{456256826736828171743385806118417658440508330965282216268720063931522308} a^{7} + \frac{14177726963944418997756472388436460389938054579401018872679072934042507}{114064206684207042935846451529604414610127082741320554067180015982880577} a^{6} - \frac{176320234889427991557269549032854964968734233995237618597395666184840473}{456256826736828171743385806118417658440508330965282216268720063931522308} a^{5} - \frac{32901826255744937776860103817614669600684646361530714557535764903261231}{456256826736828171743385806118417658440508330965282216268720063931522308} a^{4} - \frac{10732967242555960996432513457336948051728770113260580015720520407319323}{228128413368414085871692903059208829220254165482641108134360031965761154} a^{3} - \frac{50113262680930244783032263141870119815209106595934313079731467380437529}{114064206684207042935846451529604414610127082741320554067180015982880577} a^{2} + \frac{66269187551103553512156910141964748161209065281880822603851528924450055}{228128413368414085871692903059208829220254165482641108134360031965761154} a + \frac{51922734391326434585754477034112572755478102267551795833715983287099726}{114064206684207042935846451529604414610127082741320554067180015982880577}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2512137314520000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 40320 |
| The 14 conjugacy class representatives for t21n85 |
| Character table for t21n85 |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 42 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.7.0.1}{7} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.4.8.8 | $x^{4} + 4 x + 2$ | $4$ | $1$ | $8$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.4.8.8 | $x^{4} + 4 x + 2$ | $4$ | $1$ | $8$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.6.10.2 | $x^{6} + 2 x^{5} + 2 x^{4} + 2 x^{2} + 2$ | $6$ | $1$ | $10$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.6.10.3 | $x^{6} + 2 x^{5} + 4 x + 2$ | $6$ | $1$ | $10$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 11 | Data not computed | ||||||
| $71$ | 71.7.0.1 | $x^{7} - x + 6$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 71.14.7.2 | $x^{14} - 128100283921 x^{2} + 54570720950346$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |