Normalized defining polynomial
\( x^{21} - 4 x^{20} - 34 x^{19} + 250 x^{18} + 49 x^{17} - 4806 x^{16} + 10924 x^{15} + 35134 x^{14} - 181415 x^{13} + 42258 x^{12} + 1174704 x^{11} - 2046920 x^{10} - 2612752 x^{9} + 11070150 x^{8} - 4343266 x^{7} - 21914184 x^{6} + 22487749 x^{5} + 21732094 x^{4} - 35335382 x^{3} - 9878676 x^{2} + 29752822 x - 9397944 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(37877966044500313823897559260772576526336=2^{24}\cdot 11^{18}\cdot 67^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $85.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{16} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{16} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{19} - \frac{1}{4} a^{17} - \frac{1}{2} a^{16} - \frac{1}{2} a^{12} + \frac{1}{4} a^{11} + \frac{1}{4} a^{9} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{59711674143952451480517531386424925636072052562398016006395320503077816} a^{20} + \frac{3056115344834877358044346045703769914062867151425762528115517506764971}{59711674143952451480517531386424925636072052562398016006395320503077816} a^{19} - \frac{7863374819359903637689297584978551612237824970463610112643439621202845}{59711674143952451480517531386424925636072052562398016006395320503077816} a^{18} - \frac{381912630464892649302316370548826519431931013345502809724055296782025}{59711674143952451480517531386424925636072052562398016006395320503077816} a^{17} - \frac{9144936170466518357829554964295352110254130268455130323062473592658619}{29855837071976225740258765693212462818036026281199008003197660251538908} a^{16} - \frac{1761452651106464957513439317305197307427768246987526789972817053204929}{7463959267994056435064691423303115704509006570299752000799415062884727} a^{15} - \frac{2799282135625965048647654484608716697746430639573767539611364657637535}{14927918535988112870129382846606231409018013140599504001598830125769454} a^{14} + \frac{6622564963060971627865067836562188152992546025100641365871001622242849}{29855837071976225740258765693212462818036026281199008003197660251538908} a^{13} + \frac{5098015031070267145626318098643959392744324511443872963517688933314551}{59711674143952451480517531386424925636072052562398016006395320503077816} a^{12} - \frac{6908823237725437663383897298373891409626330450092436096273002843462109}{59711674143952451480517531386424925636072052562398016006395320503077816} a^{11} - \frac{27636142992680758517140691156782387740556302211354162664235283424745195}{59711674143952451480517531386424925636072052562398016006395320503077816} a^{10} - \frac{22962757673062477373541692229174763224281350986141077722679923933822245}{59711674143952451480517531386424925636072052562398016006395320503077816} a^{9} + \frac{20650866544027858219958748920044454003583646418217305635816797011399877}{59711674143952451480517531386424925636072052562398016006395320503077816} a^{8} - \frac{23461018299001092368386715510357808739668041656125533434547183634833599}{59711674143952451480517531386424925636072052562398016006395320503077816} a^{7} + \frac{24811223681760638007844421023642435754222803985090283038648565601841853}{59711674143952451480517531386424925636072052562398016006395320503077816} a^{6} + \frac{3408209155836209406690699653721524751750319194442107181121721224943339}{59711674143952451480517531386424925636072052562398016006395320503077816} a^{5} + \frac{5445667338423422992675323535065669187039009046960120772593309130165957}{29855837071976225740258765693212462818036026281199008003197660251538908} a^{4} - \frac{4634702316243718846617186440008737762013987789137408634212710173349561}{14927918535988112870129382846606231409018013140599504001598830125769454} a^{3} - \frac{13525628125774271507699552741564332611374051789491914936021887743582153}{29855837071976225740258765693212462818036026281199008003197660251538908} a^{2} + \frac{625309663089738604969281823040114976119590907272909632695725369555495}{29855837071976225740258765693212462818036026281199008003197660251538908} a + \frac{3376597462654690936647894366665694410878771910942596229251778872193537}{7463959267994056435064691423303115704509006570299752000799415062884727}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10194481907400 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$\PSL(3,4)$ (as 21T67):
| A non-solvable group of order 20160 |
| The 10 conjugacy class representatives for $\PSL(3,4)$ |
| Character table for $\PSL(3,4)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.4.6.7 | $x^{4} + 2 x^{3} + 2 x^{2} + 2$ | $4$ | $1$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 2.12.18.59 | $x^{12} - 2 x^{11} + 6 x^{10} + 4 x^{9} + 6 x^{8} + 12 x^{7} - 4 x^{6} - 8 x^{3} + 16 x^{2} - 8$ | $4$ | $3$ | $18$ | $A_4$ | $[2, 2]^{3}$ | |
| $11$ | 11.7.6.1 | $x^{7} - 11$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 11.7.6.1 | $x^{7} - 11$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| 11.7.6.1 | $x^{7} - 11$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| $67$ | $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.8.4.1 | $x^{8} + 17956 x^{4} - 300763 x^{2} + 80604484$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 67.8.4.1 | $x^{8} + 17956 x^{4} - 300763 x^{2} + 80604484$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |