Normalized defining polynomial
\( x^{21} - 9 x^{20} + x^{19} + 247 x^{18} - 1128 x^{17} + 1844 x^{16} + 1538 x^{15} - 10782 x^{14} + 6884 x^{13} + 36114 x^{12} - 29952 x^{11} - 179184 x^{10} + 356326 x^{9} + 190336 x^{8} - 1475463 x^{7} + 2097737 x^{6} - 1307021 x^{5} + 514117 x^{4} - 539862 x^{3} + 463496 x^{2} - 103930 x - 22322 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(37877966044500313823897559260772576526336=2^{24}\cdot 11^{18}\cdot 67^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $85.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 67$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{11} a^{18} - \frac{2}{11} a^{17} - \frac{3}{11} a^{15} + \frac{3}{11} a^{14} + \frac{5}{11} a^{12} - \frac{1}{11} a^{11} + \frac{1}{11} a^{10} - \frac{3}{11} a^{9} - \frac{3}{11} a^{8} - \frac{3}{11} a^{7} - \frac{1}{11} a^{6} + \frac{2}{11} a^{5} + \frac{2}{11} a^{4} + \frac{4}{11} a^{3} + \frac{1}{11} a^{2} - \frac{5}{11} a + \frac{2}{11}$, $\frac{1}{11} a^{19} - \frac{4}{11} a^{17} - \frac{3}{11} a^{16} - \frac{3}{11} a^{15} - \frac{5}{11} a^{14} + \frac{5}{11} a^{13} - \frac{2}{11} a^{12} - \frac{1}{11} a^{11} - \frac{1}{11} a^{10} + \frac{2}{11} a^{9} + \frac{2}{11} a^{8} + \frac{4}{11} a^{7} - \frac{5}{11} a^{5} - \frac{3}{11} a^{4} - \frac{2}{11} a^{3} - \frac{3}{11} a^{2} + \frac{3}{11} a + \frac{4}{11}$, $\frac{1}{117615855312388741966883503875902045280188309477291452895538742} a^{20} + \frac{181714291946261071473969908601621353159180848251384130031121}{58807927656194370983441751937951022640094154738645726447769371} a^{19} + \frac{3649942228676169070653513375262379000186000452835484291513723}{117615855312388741966883503875902045280188309477291452895538742} a^{18} + \frac{20822203646409466197461319860913093070125450001609223294479200}{58807927656194370983441751937951022640094154738645726447769371} a^{17} - \frac{16923541662534249416985463621813414296318804134951219937626177}{58807927656194370983441751937951022640094154738645726447769371} a^{16} - \frac{17652362291191499691546680350081694177343575838715741250911262}{58807927656194370983441751937951022640094154738645726447769371} a^{15} - \frac{27386096196716435252096098632390332428969918068342070881486134}{58807927656194370983441751937951022640094154738645726447769371} a^{14} - \frac{8845012454704026092209653334602809645869761306037808127144357}{58807927656194370983441751937951022640094154738645726447769371} a^{13} - \frac{11918060360783930114378343095897530787946576392085804030329468}{58807927656194370983441751937951022640094154738645726447769371} a^{12} + \frac{13582125729719174575036440113336604688568157669073593281025655}{58807927656194370983441751937951022640094154738645726447769371} a^{11} + \frac{637484580344865573109567396586948959495245935744204068864372}{58807927656194370983441751937951022640094154738645726447769371} a^{10} + \frac{6054004576215063085841353665734201169397325981630207308819541}{58807927656194370983441751937951022640094154738645726447769371} a^{9} + \frac{25953461653030591120237385553251022715073825008666887000256774}{58807927656194370983441751937951022640094154738645726447769371} a^{8} + \frac{239349421328244350171499325543357869565698735756478238564870}{1251232503323284489009398977403213247661577760396717583995093} a^{7} - \frac{27373078437002558026438610299256309674068555291358572065211789}{117615855312388741966883503875902045280188309477291452895538742} a^{6} + \frac{1715531174662054159989290779989237351123384061010036915882596}{5346175241472215543949250176177365694554014067149611495251761} a^{5} + \frac{48188159284779779401021625604067153845759977802316920899655447}{117615855312388741966883503875902045280188309477291452895538742} a^{4} + \frac{20578886270014891192489924691859859769434053197324960990672227}{58807927656194370983441751937951022640094154738645726447769371} a^{3} - \frac{23935571357753126158393825452182495512145695333874809467241900}{58807927656194370983441751937951022640094154738645726447769371} a^{2} + \frac{2647949437376549592093306545479729545890365538935712309618647}{5346175241472215543949250176177365694554014067149611495251761} a - \frac{15122724827991638797946893135057410178941153885179190541822045}{58807927656194370983441751937951022640094154738645726447769371}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10194481907400 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$\PSL(3,4)$ (as 21T67):
| A non-solvable group of order 20160 |
| The 10 conjugacy class representatives for $\PSL(3,4)$ |
| Character table for $\PSL(3,4)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.4.6.7 | $x^{4} + 2 x^{3} + 2 x^{2} + 2$ | $4$ | $1$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 2.4.6.7 | $x^{4} + 2 x^{3} + 2 x^{2} + 2$ | $4$ | $1$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| $11$ | 11.7.6.1 | $x^{7} - 11$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 11.7.6.1 | $x^{7} - 11$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| 11.7.6.1 | $x^{7} - 11$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| $67$ | $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 67.8.4.1 | $x^{8} + 17956 x^{4} - 300763 x^{2} + 80604484$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 67.8.4.1 | $x^{8} + 17956 x^{4} - 300763 x^{2} + 80604484$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |