Normalized defining polynomial
\( x^{21} - 4 x^{20} - 90 x^{19} + 411 x^{18} + 3197 x^{17} - 18197 x^{16} - 51735 x^{15} + 435956 x^{14} + 181775 x^{13} - 5893180 x^{12} + 6396148 x^{11} + 41981559 x^{10} - 100640498 x^{9} - 107519374 x^{8} + 577043557 x^{7} - 292735101 x^{6} - 1092656431 x^{5} + 1385415391 x^{4} - 168690307 x^{3} + 1127770366 x^{2} - 3401414294 x + 2197928707 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(34745317865011611886244272150166776826286229=13^{8}\cdot 109^{7}\cdot 2767^{2}\cdot 5516617^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $118.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 109, 2767, 5516617$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{17663785622326416992597117875758171874960065626008283842789124688659486016671} a^{20} - \frac{7582353504497329129844948071599934331971758385099715568857761469063551709043}{17663785622326416992597117875758171874960065626008283842789124688659486016671} a^{19} - \frac{63132770075424688262930092791439645321775394072109230770173562562832104775}{569799536204077967503132834701876512095485987935751091702874989956757613441} a^{18} + \frac{3650481066645779948489086386963044211621910099016729565688734898469813564113}{17663785622326416992597117875758171874960065626008283842789124688659486016671} a^{17} - \frac{7821519569845784644991064002024824988092474886671066709263447592743530467439}{17663785622326416992597117875758171874960065626008283842789124688659486016671} a^{16} + \frac{12608307743898917305042073385488466219460063440898486587327679595417287462}{212816694244896590272254432238050263553735730433834745093844875766981759237} a^{15} + \frac{8706722528055838489532573434067394015731164081646612278691511235925937162365}{17663785622326416992597117875758171874960065626008283842789124688659486016671} a^{14} - \frac{6963178764784524061166601140387895902684632103007747629242330044174240520023}{17663785622326416992597117875758171874960065626008283842789124688659486016671} a^{13} + \frac{8084894577536088947268472204562657571235529726153554706855577523774366824446}{17663785622326416992597117875758171874960065626008283842789124688659486016671} a^{12} + \frac{4880432756371813041582688106642749629107484332964938301802820499918847630640}{17663785622326416992597117875758171874960065626008283842789124688659486016671} a^{11} + \frac{7200084898525666999334279399325840226313053280010601380442519842840747510506}{17663785622326416992597117875758171874960065626008283842789124688659486016671} a^{10} + \frac{7681516089445085427997000116039657344912249745586970620441803563496821687899}{17663785622326416992597117875758171874960065626008283842789124688659486016671} a^{9} - \frac{259773784319418882982140938424989030607807926604161634171666315929770875186}{17663785622326416992597117875758171874960065626008283842789124688659486016671} a^{8} + \frac{4883800900112940024806862535544345619212643894094487598686156148944341903460}{17663785622326416992597117875758171874960065626008283842789124688659486016671} a^{7} + \frac{978127545250444683135335843220838183245929155314571300206649676502782273490}{17663785622326416992597117875758171874960065626008283842789124688659486016671} a^{6} - \frac{7415339524823118608323778975299167315645700306707055642300682242595755902039}{17663785622326416992597117875758171874960065626008283842789124688659486016671} a^{5} + \frac{1343853276492724847196178670224386945334692704604025865274141673760289134864}{17663785622326416992597117875758171874960065626008283842789124688659486016671} a^{4} - \frac{28959608674236961210176667854081752701201631381185775303814269151794158328}{212816694244896590272254432238050263553735730433834745093844875766981759237} a^{3} - \frac{3966192521012571645930573629657549505355981416691748649553285140200733516066}{17663785622326416992597117875758171874960065626008283842789124688659486016671} a^{2} - \frac{3337819907787551360050442564067348902387742511350346425316384386510963178606}{17663785622326416992597117875758171874960065626008283842789124688659486016671} a + \frac{2207286798287338069614778891629027754638095701334885573385826406834806159349}{17663785622326416992597117875758171874960065626008283842789124688659486016671}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11521415360300 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5878656 |
| The 84 conjugacy class representatives for t21n135 are not computed |
| Character table for t21n135 is not computed |
Intermediate fields
| 7.3.2007889.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }{,}\,{\href{/LocalNumberField/2.7.0.1}{7} }$ | $21$ | $21$ | ${\href{/LocalNumberField/7.9.0.1}{9} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/47.14.0.1}{14} }{,}\,{\href{/LocalNumberField/47.7.0.1}{7} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 13.8.6.4 | $x^{8} - 13 x^{4} + 338$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ | |
| $109$ | $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 109.12.6.1 | $x^{12} + 28490638 x^{6} - 15386239549 x^{2} + 202929113411761$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 2767 | Data not computed | ||||||
| 5516617 | Data not computed | ||||||