Normalized defining polynomial
\( x^{21} + 24 x^{19} - 16 x^{18} + 27 x^{17} - 36 x^{16} - 1662 x^{15} + 3348 x^{14} + 6192 x^{13} - 21968 x^{12} + 113589 x^{11} - 313734 x^{10} - 769213 x^{9} + 4433508 x^{8} - 9942741 x^{7} + 17192778 x^{6} - 23957316 x^{5} + 23677128 x^{4} - 15268592 x^{3} + 6066144 x^{2} - 1348032 x + 128384 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3052362005276854563388878363788994862792704=2^{14}\cdot 3^{28}\cdot 13^{6}\cdot 17^{2}\cdot 59^{2}\cdot 109^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $105.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13, 17, 59, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{3} - \frac{2}{9}$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{4} - \frac{2}{9} a$, $\frac{1}{9} a^{8} + \frac{1}{9} a^{5} - \frac{2}{9} a^{2}$, $\frac{1}{27} a^{9} - \frac{1}{9} a^{3} + \frac{2}{27}$, $\frac{1}{27} a^{10} - \frac{1}{9} a^{4} + \frac{2}{27} a$, $\frac{1}{27} a^{11} - \frac{1}{9} a^{5} + \frac{2}{27} a^{2}$, $\frac{1}{81} a^{12} - \frac{1}{81} a^{9} - \frac{1}{27} a^{6} + \frac{5}{81} a^{3} - \frac{2}{81}$, $\frac{1}{81} a^{13} - \frac{1}{81} a^{10} - \frac{1}{27} a^{7} + \frac{5}{81} a^{4} - \frac{2}{81} a$, $\frac{1}{81} a^{14} - \frac{1}{81} a^{11} - \frac{1}{27} a^{8} + \frac{5}{81} a^{5} - \frac{2}{81} a^{2}$, $\frac{1}{1944} a^{15} - \frac{1}{162} a^{14} - \frac{1}{162} a^{13} - \frac{1}{243} a^{12} + \frac{1}{648} a^{11} - \frac{1}{81} a^{10} + \frac{11}{972} a^{9} + \frac{1}{54} a^{8} - \frac{1}{27} a^{7} + \frac{10}{243} a^{6} - \frac{65}{648} a^{5} + \frac{17}{324} a^{4} + \frac{287}{1944} a^{3} + \frac{7}{81} a^{2} + \frac{245}{648} a + \frac{295}{972}$, $\frac{1}{15552} a^{16} - \frac{1}{7776} a^{15} - \frac{1}{1296} a^{14} - \frac{7}{1944} a^{13} - \frac{5}{15552} a^{12} + \frac{17}{2592} a^{11} - \frac{1}{7776} a^{10} + \frac{23}{1944} a^{9} + \frac{1}{27} a^{8} + \frac{41}{972} a^{7} + \frac{821}{15552} a^{6} - \frac{53}{324} a^{5} - \frac{1573}{15552} a^{4} + \frac{943}{7776} a^{3} - \frac{1075}{5184} a^{2} + \frac{1823}{3888} a + \frac{1223}{3888}$, $\frac{1}{124416} a^{17} - \frac{1}{7776} a^{15} + \frac{19}{7776} a^{14} + \frac{17}{4608} a^{13} + \frac{23}{31104} a^{12} - \frac{667}{62208} a^{11} + \frac{53}{3456} a^{10} - \frac{85}{7776} a^{9} - \frac{67}{7776} a^{8} + \frac{143}{4608} a^{7} - \frac{1315}{62208} a^{6} + \frac{12539}{124416} a^{5} - \frac{65}{1152} a^{4} - \frac{15005}{124416} a^{3} + \frac{613}{62208} a^{2} + \frac{1453}{3456} a + \frac{3671}{15552}$, $\frac{1}{2985984} a^{18} - \frac{1}{497664} a^{17} + \frac{1}{62208} a^{16} - \frac{5}{62208} a^{15} + \frac{313}{995328} a^{14} - \frac{529}{497664} a^{13} + \frac{1339}{497664} a^{12} - \frac{595}{124416} a^{11} + \frac{869}{124416} a^{10} - \frac{2501}{186624} a^{9} - \frac{38041}{995328} a^{8} + \frac{1733}{248832} a^{7} + \frac{44021}{995328} a^{6} + \frac{53875}{497664} a^{5} + \frac{100409}{995328} a^{4} + \frac{20693}{124416} a^{3} - \frac{12167}{124416} a^{2} + \frac{725}{15552} a - \frac{40469}{186624}$, $\frac{1}{23887872} a^{19} - \frac{1}{5971968} a^{18} + \frac{1}{663552} a^{17} - \frac{1}{165888} a^{16} + \frac{17}{884736} a^{15} - \frac{1}{18432} a^{14} + \frac{281}{3981312} a^{13} + \frac{149}{1990656} a^{12} - \frac{107}{331776} a^{11} + \frac{53}{746496} a^{10} + \frac{137621}{23887872} a^{9} - \frac{48389}{1327104} a^{8} - \frac{54433}{2654208} a^{7} - \frac{5137}{165888} a^{6} + \frac{10525}{884736} a^{5} + \frac{72589}{3981312} a^{4} + \frac{98339}{995328} a^{3} + \frac{68335}{165888} a^{2} - \frac{686621}{1492992} a - \frac{247829}{746496}$, $\frac{1}{191102976} a^{20} - \frac{1}{95551488} a^{19} + \frac{7}{47775744} a^{18} - \frac{1}{2654208} a^{17} + \frac{19}{21233664} a^{16} - \frac{7}{3538944} a^{15} - \frac{151}{31850496} a^{14} + \frac{215}{7962624} a^{13} - \frac{43}{1990656} a^{12} - \frac{857}{11943936} a^{11} + \frac{141013}{191102976} a^{10} - \frac{37235}{11943936} a^{9} + \frac{15641}{7077888} a^{8} + \frac{66461}{3538944} a^{7} + \frac{457015}{21233664} a^{6} - \frac{1022263}{15925248} a^{5} + \frac{48083}{15925248} a^{4} - \frac{25969}{248832} a^{3} + \frac{4192945}{11943936} a^{2} + \frac{984295}{2985984} a + \frac{1328107}{2985984}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $12$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12933156465800 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 2939328 |
| The 120 conjugacy class representatives for t21n125 are not computed |
| Character table for t21n125 is not computed |
Intermediate fields
| 7.3.2007889.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | R | R | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.23 | $x^{14} + x^{12} + 2 x^{11} + 2 x^{10} + 2 x^{9} + 2 x^{8} + 2 x^{4} + 2 x^{3} + 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | 14T6 | $[2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| $13$ | 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $17$ | 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 17.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 17.6.0.1 | $x^{6} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 17.9.0.1 | $x^{9} - 5 x + 3$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
| 59 | Data not computed | ||||||
| $109$ | 109.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 109.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 109.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 109.12.6.1 | $x^{12} + 28490638 x^{6} - 15386239549 x^{2} + 202929113411761$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |